Program v akademickém roce 2021/2022

1. 6. 2022

Jacek Chudziak (University of Rzeszów), On approximation of solutions of the translation equation.

Seminář se koná již od 13.30 v místnosti R1.

25. 5. 2022

Jacek Chudziak (University of Rzeszów), Non-periodic solutions of the Gołąb-Schinzel type functional equations.

18. 5. 2022

Thomas Zürcher (University of Silesia in Katowice), Some remarks on random homeomorphisms.

4. 5. 2022

Michaela Záškolná, Mandelbrotova množina.

20. 4. 2022

prof. Eva Kopecká (University of Innsbruck), Geometry of products of orthogonal projections.

13. 4. 2022

Łukasz Cholewa (AGH University of Science and Technology, Kraków), On dynamics of Lorenz maps - renormalizations and α-limit sets.

Abstract

30. 3. 2022

Seminář se nekoná.

16. 3. 2022

Seminář se nekoná.

2. 3. 2022

Jernej Činč (AGH University, Kraków a IT4Innovation Ostravská univerzita, Ostrava), Inverse limits in dynamical systems Part 2.

23. 2. 2022

Jernej Činč (AGH University, Kraków a IT4Innovation Ostravská univerzita, Ostrava), Inverse limits in dynamical systems Part 1.

Abstract: In this collection of seminars I will first formally introduce inverse limit spaces and give some basic examples. Then I will discuss some connections between inverse limits and dynamical systems. Finally, I will introduce a technique called Brown-Barge-Martin embeddings which relies on inverse limit spaces and has been successfully applied in several recent advances in the field of surface dynamics.

15. 12. 2021

Veronika Rýžová, Centre and backward limit points.

8. 12. 2021

Olena Karpel (AGH University of Science and Technology, Kraków), Tail invariant measures on Bratteli diagrams and their generalizations.

1. 12. 2021

Jana Hantáková, When all closed sets are α-limit sets (joint work with S. Roth and L. Snoha).

17. 11. 2021

Seminář se nekoná (státní svátek)

3. 11. 2021

Dr. Matúš Dirbák (Banská Bystrica), Minimal direct products.

Abstract: We shall be interested in minimality of direct products in the setting of discrete topological dynamical systems (X; T) given by the action of a continuous map T on a metrizable space X. We call a compact metrizable space Y product-minimal if for every minimal system (X; T) there is a continuous map S : Y ! Y such that the product (X; T)(Y; S) is minimal. We will present examples of product-minimal spaces and indicate how they can be used to construct "strange" minimal spaces. The talk is based on a recent joint work with Ľubomír Snoha and Vladimír Špitálský.

20. 10. 2021

Samuel Roth, How to make a non-Borel special alpha limit set.

6. 10. 2021

Seminář se nekoná (Vědecká rada Matematickeho ústavu).

5. 10. 2021

Hynek Baran, Symetrie integrabilních parciálních diferenciálních rovnic (habilitační přednáška).

Seminář se koná MIMOŘÁDNĚ v úterý ve 14.45 v místnosti R1.

22. 9. 2021

Lenka Rucká, Some results on distributionally chaotic points.

 

Seminař se bude konat zpravidla každý lichý týden, v sudé týdny se bude ve stejnou dobu (středa 14:00–15:30) a na stejném místě (posluchárna R1) konat seminář doc. Málka.