Rok 2019

  • M. Engliš, Uniqueness of smooth radial balanced metrics on the disc. Complex Variables and Elliptic Equations 64 No. 3 (2019), 519-540.
  • M. Marvan and M. V. Pavlov, Integrable dispersive chains and their multi-phase solutions, Letters in Mathematical Physics 109 (2019), 1219–1245.
  • S. Roth and J. Bobok, The infimum of Lipschitz constants in the conjugacy class of an interval map. Proceedings of the American Mathematical Society 147 No. 1 (2019), 255-269.

Rok 2018

  • F. Balibrea, J. Smítal, M. Štefánková, Generic properties of nonautonomous dynamical systems, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 28 (2018), 1850102 (7 pages).
  • H. Baran, I.S. Krasil'shchik, O. I. Morozov, P. Vojčák, Nonlocal symmetries of integrable linearly degenerate equations: A comparative study, Theoretical and Mathematical Physics 196 (2018), no. 2, 1089–1110.
  • M. Engliš, H. Xu, Higher Laplace–Beltrami operators on bounded symmetric domains, Acta Math Sinica, English Series 34 (2018), 1297 – 1312.
  • M. Eleuteri, J. Kopfová, Elasto-plastic contact problems with heat exchange and fatigue, Journal of Mathematical Analysis and Applications 459 (2018), 82 – 111.
  • M. Eleuteri, J. Kopfová, New model for fatigue and phase transition in an oscillating elastoplastic plate, Journal of Differential Equations 265 (2018), 1839 – 1874.
  • A. Hlaváč, More exact solutions of the constant astigmatism equation, Journal of Geometry and Physics 123 (2018) 209 - 220.
  • M. Málek, P. Raith, Stability of the distribution function for piecewise monotonic maps on the interval, Discrete and Continuous Dynamical Systems - Series A 38 (2018), 2527 – 2539.
  • M. Misiurewicz and S. Roth, Constant slope maps on the Extended real line, Ergodic Theory and Dynamical Systems 38 (2018), 3145 – 3169.
  • M. Mlíchová, Li-Yorke sensitive and weak mixing dynamical systems, Journal of Difference Equations and Applications 24 (2018), 667 – 674.
  • M. Mlíchová and M. Štefánková, On generic and dense chaos for maps induced on hyperspaces, Journal of Difference Equations and Applications 24 (2018), 685 – 700.
  • S. Roth, Constant slope models with finitely generated maps,Discrete and Continuous Dynamical Systems - Series A 38 (2018), 2541 – 2554.
  • Z. Roth, Distributional chaos on dendrites, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 28, No. 14 (2018), 1850178 (10 pages).
  • A. Sergyeyev, Integrable (3+1)-dimensional systems with rational Lax pairs, Nonlinear Dynamics 91 (2018), 1677-1680.
  • A. Sergyeyev, New integrable (3+1)-dimensional systems and contact geometry, Letters in Mathematical Physics 108 (2018), 359 – 376.
  • J. Šotola, Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems, Discrete and Continuous Dynamical Systems - Series A 38 (2018), 5119–5128.
  • P. Holba, I.S. Krasil'shchik, O. I. Morozov, P. Vojčák, Reductions of the universal hierarchy and rdDym equations and their symmetry properties, Lobachevskii J. Math. 39 (2018), no. 5, 673–681.
  • L. Block, J. Keesling, L. Rucká, Generalization of topological entropy, Topology Proceedings 52 (2018), 205 – 218.
  • K. Makka, K.Kampová, L. Hofreiter, K. Petrlová, Assesment of environmental risk and impacts of folling stations activitieson on environment. SGEM Scientific Papers Database. Proceedings of konference Science in Geology, Oil and Gas Exploration, Water Resources, Forest Ecosystems, Issue 1.5, 3 - 6 December, Vienna, Austria 2018.


Rok 2017

  • M. Marvan and M. V. Pavlov, A new class of solutions for the multi-component extended Harry Dym equation, Wave Motion 74 (2017), 151-158.
  • A. Sergyeyev, A simple construction of recursion operators for multidimensional dispersionless integrable systems, Journal of Mathematical Analysis and Applications 454 (2017), 468-480.
  • M. Blaschke, Z. Stuchlík, F. Blaschke and P. Blaschke, Classical corrections to black hole entropy in d dimensions: A rear window to quantum gravity?, Physical Review D 96 (2017), „104012-1“-„104012-6“.
  • M. Blaszak and A. Sergyeyev, Dispersionless (3+1)-dimensional integrable hierarchies, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473 (2017), „20160857-1“-„20160857-16“.
  • M. Foryś-Krawiec, P. Oprocha and M. Štefánková, Distributionally chaotic systems of type 2 and rigidity, Journal of Mathematical Analysis and Applications 452 (2017), 659-672.
  • J. Smítal and M. Štefánková, Generalized Dhombres functional equation, Developments in Functional Equations and Related Topics (2017), 297-303.
  • J. Chudziak and Z. Kočan, Golab–Schinzel equation on cylinders, Aequationes Mathematicae 91 (2017), 547-561.
  • S. Opanasenko, A. Bihlo and R. Popovych, Group analysis of general Burgers-Korteweg-de Vries equations, Journal of Mathematical Physics 58 (2017), „081511-1“-„081511-37“.
  • J. Hantáková, Iteration Problem for Distributional Chaos, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 27 (2017), „1750183-1“-„1750183-10“.
  • S. H. H. Chowdhury, S. T. Ali and M. Engliš, Noncommutative coherent states and related aspects of Berezin-Toeplitz quantization, Journal of Physics A: Mathematical and Theoretical 50 (2017), „195203-1“-„195203-19“.
  • M. Marvan and A. Hlaváč, Nonlocal conservation laws of the constant astigmatism equation, Journal of Geometry and Physics 113 (2017), 117–130.
  • J. Tesarčík, On the spectrum of dynamical systems on trees, Topology and its Applications 222 (2017), 227-237.
  • P. Blaschke, Pedal coordinates, dark Kepler, and other force problems, Journal of Mathematical Physics 58 (2017), „063505-1“-„063505-25“.
  • M. Engliš and Z. Genkai, Toeplitz operators on higher Cauchy-Riemann spaces, Documenta Mathematica 22 (2017), 1081-1116.
  • J. Kopfová, M. Minárová and J. Sumec, Visco-elastic-plastic modeling, Proceedings of Equadiff 2017 Conference (2017), 173-180.


Rok 2016

  • B. Volná, A dynamic IS-LM model with relaxation oscillations, Applicable Analysis 95 (2016), 661-667.
  • I. S. Krasil'shchik, A Natural Geometric Construction Underlying a Class of Lax Pairs, Lobachevskii Journal of Mathematics 37 (2016), 60-65.
  • M. Engliš, An excursion into Berezin–Toeplitz quantization and related topics, Quantization, PDEs, and Geometry. The Interplay of Analysis and Mathematical Physics (2016), 69-115.
  • J. Šotola, Answers to some problems on self-similar sets and the open set condition, Difference Equations, Discrete Dynamical Systems and Applications ICDEA, Barcelona, Spain, July 2012 (2016), 297-301.
  • P. Blaschke, Asymptotic analysis via calculus of hypergeometric functions, Journal of Mathematical Analysis and Applications 433 (2016), 1790-1820.
  • M. Engliš, H. Bommier-Hato and E-H. Youssfi, Bergman kernels, TYZ expansions and Hankel operators on the Kepler manifold, Journal of Functional Analysis 271 (2016), 264-288.
  • J. Kopfová and V. Recupero, BV-norm continuity of sweeping processes driven by a set with constant shape, Journal of Differential Equations 261 (2016), 5875-5899.
  • S. Trofimchuk and J. Šotola, Construction of minimal non-invertible skew-product maps on 2-manifolds, Proceedings of the American Mathematical Society 144 (2016), 723-732.
  • M. Málek and Z. Kočan and V. Kurková, Counterexamples of continuous maps on dendrites, Journal of Difference Equations and Applications 22 (2016), 253-271.
  • H. Baran, P. Vojčák, I. S. Krasil'shchik and O. I. Morozov, Coverings over lax integrable equations and their nonlocal symmetries, Theoretical and Mathematical Physics 188 (2016), 1273–1295.
  • J. Doleželová-Hantáková, Distributional chaos and factors, Journal of Difference Equations and Applications 22 (2016), 99-106.
  • M. Engliš and G. Zhang, Hankel operators and the Dixmier trace on the Hardy space, Journal of the London Mathematical Society 94 (2016), 337–356.
  • M. Engliš, High-power asymptotics of some weighted harmonic Bergman kernels, Journal of Functional Analysis 271 (2016), 1243-1261.
  • A. Sergyeyev, I. S. Krasil'shchik and O. I. Morozov, Infinitely many nonlocal conservation laws for the ABC equation with A + B + C ≠ 0, Calculus of Variations and Partial Differential Equations 55 (2016), 01.prosince.
  • M. Štefánková, Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval, Discrete and Continuous Dynamical Systems - Series A 36 (2016), 3435-3443.
  • G. Manno and G. Moreno, Meta-Symplectic Geometry of 3rd Order Monge-Ampere Equations and their Characteristics, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 12 (2016), ledna.35.
  • M. Málek, Omega-limit sets and invariant chaos in dimension one, Journal of Difference Equations and Applications 22 (2016), 468-473.
  • M. Štefánková, J. Dvořáková and N. Neumärker, On omega-limit sets of non-autonomous dynamical systems with a uniform limit of type $2^{infty}$,, Journal of Difference Equations and Applications 22 (2016), 636-644.
  • G. Moreno and M. E. Stypa, On the vertex-to-edge duality between the Cayley graph and the coset geometry of von Dyck groups, Mathematica Slovaca 66 (2016), 527-538.
  • J. Doleželová-Hantáková, Z. Roth and S. Roth, On the Weakest Version of Distributional Chaos, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 26 (2016), "1650235-1"-"1650235-13".
  • A. Sergyeyev and R. Vitolo, Symmetries and conservation laws for the Karczewska-Rozmej-Rutkowski-Infeld equation, Nonlinear Analysis: Real World Applications 32 (2016), 01.září.
  • K. Hasík, J. Kopfová, P. Nábělková and S. Trofimchuk, Traveling waves in the nonlocal KPP-Fisher equation: Different roles of the right and the left interactions, Journal of Differential Equations 260 (2016), 6130-6175.