Phone contact


+420 553 684 685




prof. RNDr. Artur Sergyeyev, Ph.D., DSc.



Vybrané publikace / Selected publications

  1. A. Sergyeyev, Recursion Operators for Multidimensional Integrable PDEs*, Acta Appl. Math. 181 (2022), art. 10, 12 pp.
  2. A. Sergyeyev, Integrable (3+1)-dimensional system with an algebraic Lax pairAppl. Math. Lett. 92 (2019), 196-200. (arXiv version**)
  3. A. Sergyeyev, New integrable (3+1)-dimensional systems and contact geometry*, Lett. Math. Phys. 108 (2018), no. 2, 359-376 (arXiv version has some typos fixed)
  4. A. Sergyeyev, Integrable (3+1)-dimensional systems with rational Lax pairs*, Nonlinear Dynamics 91 (2018), no. 3, 1677-1680 (arXiv version)
  5. A. Sergyeyev, A Simple Construction of Recursion Operators for Multidimensional Dispersionless Integrable SystemsJ. Math. Analysis and Appl. 454 (2017), no. 2, 468-480 (arXiv version)
  6. A. Sergyeyev, R. Vitolo, Symmetries and conservation laws for the Karczewska--Rozmej--Rutkowski--Infeld equationNonlinear Analysis: Real World Applications 32 (2016), 1-9 (arXiv version)
  7. A. Sergyeyev, Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEsPhysics Letters A 376 (2012)no.28-292015-2022  (arXiv version)
  8. M. Marvan, A. Sergyeyev, Recursion operators for dispersionless integrable systems in any dimensionInverse Problems 28 (2012) 025011 (arXiv version)
  9. A. Sergyeyev, Infinitely Many Local Higher Symmetries without Recursion Operator or Master Symmetry: Integrability of the Foursov--Burgers System Revisited*, Acta Applicandae Mathematicae 109 (2010), no.1, 273-281 (arXiv version)
  10. A. Sergyeyev, Infinite hierarchies of nonlocal symmetries of the Chen--Kontsevich--Schwarz type for the oriented associativity equationsJ. Phys. A: Math. Theor. 42 (2009), no. 40, art. 404017, 15 pp. (arXiv version)
  11. A. Sergyeyev, B. M. Szablikowski, Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systemsPhys. Lett. A 372 (2008), 7016-7023 (arXiv version)
  12. A. Sergyeyev, P. Krtouš, Complete set of commuting symmetry operators for the Klein-Gordon equation in generalized higher-dimensional Kerr-NUT-(A)dS spacetimesPhys. Rev. D 77 (2008), paper 044033 (arXiv version
  13. A. Sergyeyev, M. Blaszak, Generalized Stackel transform and reciprocal transformations for finite-dimensional integrable systemsJ. Phys. A: Math. Theor. 41 (2008), paper 10525 (arXiv version)
  14. A. Sergyeyev, Exact solvability of superintegrable Benenti systemsJ. Math. Phys. 48 (2007), no.5, paper 052114 (arXiv version)
  15. A. Sergyeyev, Zero curvature representation for a new fifth-order integrable system*, J. Math. Sci. 151 (2008) 3227-3229 (arXiv version
  16. A. Sergyeyev, A strange recursion operator demystifiedJ. Phys. A: Math. Gen. 38 (2005), no.15, L257-L262 (arXiv version
  17. A. Sergyeyev, Why nonlocal recursion operators produce local symmetries: new results and applicationsJ. Phys. A: Math. Gen. 38 (2005), no.15, 3397-3407 (arXiv version
  18. M. Blaszak, A. Sergyeyev, Maximal superintegrability of Benenti systemsJ. Phys. A: Math. Gen. 38 (2005), no.1, L1-L5 (arXiv version
  19. A. Sergyeyev, On the classification of conditionally integrable evolution systems in (1+1) dimensions*, J. Math. Sci. 136 (2006) 4392-4400 (arXiv version
  20. A. Sergyeyev, A simple way of making a Hamiltonian system into a bi-Hamiltonian one*, Acta Appl. Math. 83 (2004), no.1-2, 183-197 (arXiv version
  21. A. Sergyeyev, Locality of symmetries generated by nonhereditary, inhomogeneous, and time-dependent recursion operators: a new application for formal symmetries*, Acta Appl. Math.83 (2004), no.1-2, 95-109 (arXiv version
  22. M. Marvan, A. Sergyeyev, Recursion operator for the stationary Nizhnik--Veselov--Novikov equationJ. Phys. A: Math. Gen. 36 (2003), no.5, L87-L92 (arXiv version
  23. A. Sergyeyev, J.A. Sanders, A remark on nonlocal symmetries for the Calogero--Degasperis--Ibragimov--Shabat equationJ. Nonlin. Math. Phys. 10 (2003), no. 1, 78-85 (arXiv copy
  24. A. Sergyeyev, Constructing conditionally integrable evolution systems in (1+1) dimensions: a generalization of invariant modules approachJ. Phys. A: Math. Gen. 35 (2002), 7653-7660 Preprint version (gzipped PostScript)
  25. A. Sergyeyev, Symmetries and integrability: Bakirov system revisitedJ. Phys. A: Math. Gen. 34 (2001), no.23, 4983-4990.

* Text článku lze na tomto odkaze přečíst zdarma i pokud nemáte předplatné / Full text at the link is free to read even without valid subscription

**arXiv version je preprintová verze článku volně přístupna na webu / arXiv version means a preprint full-text version available free of charge from