doc. RNDr. Marta Štefánková, Ph.D.

Email: marta.stefankova@math.slu.cz

Position:

Associate Professor,
Head of the Department of Real Analysis and Dynamical Systems

Curriculum vitae:

  • Undergraduate study at the Silesian University in Opava, Institute of Mathematics and Computer Science (1992–1997).
  • Master thesis: "On a conjecture of Agronsky and Ceder concerning orbit-enclosing omega limit sets".
  • Graduate study at the Mathematical Institute of the Silesian University, Opava (1997–2000).
  • Ph.D. thesis: "Chaos in discrete dynamical systems" (2000).
  • Award from the Minister of education for excellent students (2000).
  • Habilitation thesis: Chaotic maps on compact metric spaces (2003).
  • Award from the Rector of the Silesian University for "important scientific results in dynamical systems, real functions, functional equations, and complex analysis" (2007).
  • Prize of The Learned Society of the Czech Republic for young scientists "for internationally recognized contribution to the theory of dynamical systems" (2008).
  • Stipendium L'Oréal for Women in Science (project of the Czech Commission for UNESCO and Academy of Sciences of the Czech Republic, 2009).
  • Research: Discrete dynamical systems, chaos on the compact metric spaces, distributional chaos. Theory of functions. Functional equations.

Výuka v zimním semestru 2018/2019

Matematická analýza I
Místo konání: R1     Čas konání: středa 8.05–10.30
Sylabus přednášek a literatura

Výuka v letním semestru 2018/2019

Matematická analýza II
Místo konání: R1     Čas konání: středa 8.05–10.30
Sylabus přednášek a literatura


Publikační činnost

List of publications

  • M. Babilonova, On a conjecture of Agronsky and Ceder concerning orbit-enclosing omega limit sets, Real Analysis Exchange 23 (1997/98) 773–777.
    MR 99i:26004, Zbl 939.37013.
  • M. Babilonova, Distributional chaos for triangular maps, Annales Mathematicae Silesianae 13 (1999) 33–38.
    MR 2000k:37018, Zbl pre 991.30894.
  • M. Babilonova, The bitransitive continuous maps of the interval are conjugate to maps extremely chaotic a.e., Acta Math. Univ. Comen. 69 (2000) (2) 229–232.
    MR 2002f:37062, Zbl 0978.37027.
  • M. Babilonova, Massive chaos, Real Analysis Exchange 25 (1999/2000) (1) 43–44.
  • M. Babilonova, On stationary and determining sets for J-convex functions. Real Analysis Exchange (2000), Summer Symposium 2000 Suppl., 29–34.
  • M. Babilonova-Stefankova, Solution of a problem of S. Marcus concerning J-convex functions, Aequationes Mathematicae 63 (2002) 136–139.
    MR 2002m:26008, Zbl 1013.26009
  • M. Babilonova-Stefankova, Extreme chaos and transitivity, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1695–1700.
  • J. Smital and M. Stefankova, Strongly omega-chaotic mappings of the interval, Real Analysis Exchange 27 (1) 2001/2002, 25th Summer Symposium Conference Report, 43–46.
    (Abstract of the talk at Summer Symposium on Real Analysis, Ogden Utah, 2001).
  • J. Smital and M. Stefankova, Omega-chaos almost everywhere, Discrete and Continuous Dynamical Systems 9 (2003), 1323–1327.
  • J. Smital and M. Stefankova, Distributional chaos for triangular maps, Chaos, Solitons and Fractals 21 (2004), 1125–1128.
  • L. Reich, J. Smital and M. Stefankova, The continuous solutions of a generalized Dhombres functional equation, Math. Boh. 129 (2004), 399–410.
  • F. Balibrea, J. Smital and M. Stefankova, The three versions of distributional chaos, Chaos, Solitons and Fractals 23 (2005), 1581-1583.
  • A. Rysavy and M. Stefankova (Eds.), Report of Meeting, The Forty-second International Symposium on Functional Equations, June 20–27, 2004, Opava, Czech Republic, Aequationes Mathematicae 69 (2005), 164-200.
  • L. Reich, J. Smital and M. Stefankova, The converse problem for a generalized Dhombres functional equation, Math. Bohemica 130 (2005), 301-308.
  • M. Stefankova, On topological entropy of transitive triangular maps, Topology Appl. 153 (2006), 2673-2679.
  • L. Reich, J. Smital and M. Stefankova, Local analytic solutions of the generalized Dhombres functional equation I, Sitzungsberichte Oesterreich. Akad. Wiss. Abt. II, 214 (2006), 3-25.
  • L. Reich, J. Smítal and M. Štefánková, The holomorphic solutions of the generalized Dhombres functional equation, J. Math. Anal. Appl. 333 (2007), 880-888. ISSN 0022-247X
  • P. Oprocha and M. Štefánková, Specification property and distributional chaos almost everywhere, Proc. Amer. Math. Soc. 136 (2008), 3931-3940.
  • L. Reich, J. Smítal and M. Štefánková, Locally analytic solutions of the generalized Dhombres functional equation II, J. Math. Anal. Appl. 355 (2009), 821-829.
  • F. Balibrea, J. Smítal and M. Štefánková, A triangular map of type 2 to infinity with positive topological entropy on a minimal set, Nonlin Anal A - Theor Meth Appl 74 (2011), 1690-1693.
  • L. Reich, J. Smítal and M. Štefánková, Functional equation of Dhombres type in the real case, Publ Math Debrecen 78 (2011), 659-673.
  • F. Balibrea, J. Smítal and M. Štefánková, On open problems concerning distributional chaos for triangular maps, Nonlin. Anal. A: Theory, Methods Appl. 74 (2011), 7342-7346.
  • M. Štefánková, Strange chaotic triangular maps, Chaos, Solitons & Fractals 45 (2012), 1188-1191.
  • T. Downarowicz and M. Štefánková, Embedding Toeplitz systems in triangular maps; The last but one problem of the Sharkovsky classification program, Chaos, Solitons & Fractals 45 (2012), 1566–1572.
  • L. Reich, J. Smítal and M. Štefánková, On generalized Dhombres equations with non-constant rational solutions in the complex plane, J. Math. Anal. Appl. 399 (2013), 542–550.
  • M. Štefánková, Strong and weak distributional chaos, J. Difference Equ. Appl. 19 (2013), 114–123.
  • L. Reich, J. Smítal, M. Štefánková, Singular solutions of the Generalized Dhombres functional equation, Results Math 65 (2014), 251–261.
  • F. Balibrea, J. Smítal and M. Štefánková, Dynamical systems generating large sets of probability distribution functions, Chaos, Solitons & Fractals 67 (2014), 38-42.
  • J. Smítal and M. Štefánková, On regular solutions of the generalized Dhombres equation, Aequationes Math. 89 (2015), 57–61.
  • L. Reich, J. Smítal, and M. Štefánková, On regular solutions of the generalized Dhombres equation II, Results in Math. 67 (2015), 521–528.
  • J. Dvořáková, N. Neumärker and M. Štefánková, On omega-limit sets of non-autonomous dynamical systems with a uniform limit of type $2^{\infty}$, J. Differ. Equ. Appl. 22 (2016), 636–644.
  • M. Štefánková, Inheriting of chaos in uniformly convergent nonautonomous dyamical systems on the interval, Discrete Cont Dynam Sys A 36 (2016), 3435–3443.
  • M. Štefánková, The Sharkovsky program of classification of triangular maps – a survey. Topology Proceedings 48 (2016), 135–150.
  • M. Foryś-Krawiec, P. Oprocha and M. Štefánková, Distributionally chaotic systems of type 2 and rigidity, J. Math. Anal. Appl. 452 (2017), 659–672.
  • J. Smítal and M. Štefánková, Generalized Dhombres functional equation, in: „Developments in Functional Equations and Related Topics", Springer Optimization and Its Applications 124 (2017), 297–303. ISSN 1931–6828, ISBN 978-3-319-61731-2 (Cieplinski, Brzdek and Rassias Eds).
  • M. Mlíchová and M. Štefánková, On generic and dense chaos for maps induced on hyperspaces, J. Diff. Equ. Appl. 24 (2018), 685 – 700. ISSN 1023-6198 (GB)
  • F. Balibrea, J. Smítal, M. Štefánková, Generic properties of nonautonomous dynamical systems, Int. J. Bifur. Chaos 28 (2018), 1850102.