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Mathematical Analysis
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Slezská univerzita v Opavě
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1 Introduction

This thesis is about the differentiability of continuous convex functions on
topological vector spaces. The mentioned chapters and sections are the sec-
tion of the thesis. First we introduce the basic definitions of different types
of differentiability (chapter 1), then we describe the relationships between
these differentiabilities and give the corresponding diagram (section 2.1 and
2.2), followed by the special case of a scalar function and the corresponding
diagram (section 2.3). In the section 2.4 we describe the relationship between
differentability and continuity.

The goal of this thesis is to classify the relationships between various
types of differentiabilities for the case of continuous convex functions and
provide the corresponding diagram and the counter-examples showing that
implications on the diagram are not equivalence relations (section 2.5).

2 Main results

2.1 A construction of convex functions

We give a construction of convex functions on infinite-dimensional spaces
and then apply it to give an illustration to a theorem from [6] on existence of
Gâteaux differentiability points that are not Fréchet differentiability points
(for more detailed information, see [8]), viz., we construct on lp, p ≥ 1,
a convex continuous function, which is everywhere compactly differentiable
and is not Fréchet differentiable at zero.

It is known that, in normed spaces, Fréchet differentiability at a point
implies compact differentiability at this point. On the other hand, there are
compactly differentiable functions on a normed space which are not Fréchet
differentiable (see [1], [3]).

For continuous convex functions on normed spaces, Gâteaux differentia-
bility at a point implies compact differentiability at this point (see [4], [6]).
More than that, for functions on arbitrary topological vector spaces, Gâteaux
differentiability of a continuous convex function at a point implies Michal-
Bastiani differentiability at this point [4]. Michal-Bastiani differentiability
(see [3]) is in general stronger than compact differentiability, and for normed
spaces is equivalent to compact differentiability.



Theorem. Let X be a set, let F (X,R) be a space of real-valued functions on
X, and let p be a convex function on F (X,R). Let ≺ denote the following
order relation on F (X,R):

f ≺ g :⇔ f(x) ≤ g(x) ∀x ∈ X,

and assume that p is monotonically increasing with respect to ≺ on nonneg-
ative functions. Let, further, for each x ∈ X there is given a nonnegative
convex function ϕx on R, such that for each f ∈ F (X,R) the function

x 7→ ϕx(f(x))

also belongs to F (X,R), and let A be an operator

A : F (X,R)→ F (X,R)

defined by the formula
(Af)(x) = ϕx(f(x)).

Then p ◦ A is a convex function on F (X,R).

Here we provide the mentioned application of the above theorem.

Theorem. Define a function f : lp → R, p ≥ 1, by

f(x) = ||(|x1|1+1, |x2|1+
1
2 , |x3|1+

1
3 , . . .)||p,

where

||x||p := p

√∑
i

|xi|p.

We claim that this function is defined on the whole space lp, is continuous
and convex, is everywhere compactly differentiable, but is not Fréchet differ-
entiable at zero.

2.2 Continuous convex MS-differentiable function need
not be HL-differentiable

We construct here an example of a continuous convex function on a lo-
cally convex space, which is MS-differentiable at a point, but is not HL-
differentiable at this point.



There are three the most interesting differentiabilities: MB-differentiability,
MS-differentiability (in the sense of Marinescu-Sebastião e Silva), and HL-
differentiability (in the sense of Hyers-Lang), with the following relations
between:

HL
⇒
:

MS
⇒
:

MB

(see [3]). It is known long ago (see, e.g. [6]) that for continuous convex
functions

MB ; MS

(already for functions on normed spaces, for which MB-differentiability is
reduced to compact differentiability and MS-differentiability to Fréchet dif-
ferentiability). Here we show that for continuous convex functions

MS ; HL.

We construct explicitly a continuous convex function on a non-normable
locally convex space, which is MS-differentiable at a point, but is not HL-
differentiable at this point. The non-normability is essential, since for normed
spaces both MS- and HL-differentiabilities are equivalent to Fréchet differ-
entiability [3].

First we introduce several needed lemmas:

Lemma. 1) A mapping r : X → R with r(0) = 0 is MS-small if and only if

∃U ∈ Nb0(X) ∀ε > 0 ∃U ′ ∈ Nb0(X) : (slUr)
∣∣∣
U ′\{0}

≤ ε.

2) A mapping r : X → R with r(0) = 0 is HL-small if and only if

∃U ∈ Nb0(X) ∀ε > 0 ∃δ > 0 : (slUr)
∣∣∣
δU\{0}

≤ ε.

The next simple lemma says that U -slope of a linear functional at each
point is not greater then the supremum of this functional on U :

Lemma. Let x′ be a linear functional on X, let U be an absorbing balanced

subset in X, and let x′
∣∣∣
U
≤M (M > 0). Then

slUx
′ ≤M

(everywhere).



To construct our example we use the following

Basic lemma. Let U1 ⊃ U2 ⊃ U3 ⊃ . . . be a base of convex balanced closed
neighborhoods of zero in X (so that X is a metrizable locally convex TVS).
Let us suppose that there exists a countable family

{x∗nk}n,k∈N

of continuous linear functionals x∗nk on X, such that the numbers

αnk := sup
U1

x∗nk, βnk := sup
Un

x∗nk, γnk := sup
Un+1

x∗nk

satisfy the conditions
(i) all αnk; βnk, γnk are > 0;
(ii) αnk and βnk does not depend on k:

αnk = αn, βnk = βn;

(iii) αn ↓ 0 as n→∞;
(iv) ∀n ∈ N

γnk ↓ 0 as k →∞.
Then the function

r :=
∨
n,k∈N

((x∗nk − γnk) ∨ 0)

is MS-small, but is not HL-small (or equivalently, r is MS-differentiable at 0
(with zero derivative), but is not HL-differentiable at 0).

Here
∨
α fα denotes the supremum of a family of functions:

(
∨
α

fα)(x) := sup
α
fα(x).

Example. Let H be a separable Hilbert space with an ortho-normal base
{enk}n,k∈N, and let Ai for each natural i is a diagonal operator in H, given
by the rule

Ai(enk) =

{
enk if i 6= n,
1
k
enk if i = n.

Denote by B the unit ball in H and define by induction

U1 := B,



Ui+1 :=
1

2
AiUi.

Consider continuous linear functionals x∗nk on H, corresponding to vectors
n−1enk:

x∗nk(x) := (n−1enk|x);

here (.|.) denotes the scalar product in H. Put

γnk := sup
Un+1

x∗nk

and
r :=

∨
n,k∈N

((x∗nk − γnk) ∨ 0).

Then
1) {Ui}i∈N is a base of neighborhoods of zero for a Hausdorff locally convex
topology τ in H;
2) r is MS-differentiable at zero, but is not HL-differentiable at zero;
3) r is a continuous convex function on (H, τ).

2.3 A partial result on the connection of b-differentiable
and MS-differentiable continuous convex functions

The goal, which is not so far attained, is to prove that continuous convex
b-differentiable function need not be MS-differentiable. At the moment I
provide only the lemma that might be crucial in finding the right function
and space to prove this.

Lemma. Let X be a Hausdorff locally convex topological vector space, let
{Ui}i∈N be a base of neigborhoods of zero, such that all Ui are balanced, closed,
ray-bounded and it holds Ui+1 ⊂ 1

4
Ui. Let further

{xnk}n,k∈N ⊂ X

{x∗nk}n,k∈N ⊂ X∗

and
αnk := sup

U1

x∗nk, βnk := sup
Un

x∗nk, γnk := sup
Uk

x∗nk,

fnk := (x∗nk − γn,k+1) ∨ 0,



(
so obviously fnk|Uk+1

= 0 ∀n
)

(1)

f :=
∨
n,k∈N

fnk,

1) all αnk ≤ 1, αnk ≤ αn ↘ 0 as n→∞
2) ∀n ∃ βn > 0 ∀k ... βnk ≥ βn,

3) ∀n ∀h ∈ X ... x∗nk(h)→ 0 as k →∞,

4) ∀n, k ... xnk ∈ Uk,
5) ∀n, k ... x∗nk(xnk) ≥ 1

2
γnk,

6) ∀n, k ... µUn(xnk) ≤ γnk

βnk
.

Then

a) f is continuous and convex,
b) f is MB-differentiable,
c) f is not MS-differentiable.

The problem, which is remained so far unsolved, is to construct a Montel
Hausdorff locally convex metrizable space, for which there exist xnk and x∗nk
satisfying the conditions of the lemma (for Montel spaces MB-differentiability
implies b-differentiability, see the diagram in 2.3).

3 Publications

1. Konderla T.: Differentiation of Continuous Convex Functions, ISSN
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4 Presentations

During my study I presented several times my status of research and the
articles on the seminars of prof. Smı́tal and prof. Englǐs.
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Math. Helv. 38, pp.308-320, 1964.

[12] Konderla T.: Differentiation of Continuous Convex Functions, ISSN
0001-4346, Mathematical Notes, 2012, Vol. 91, No. 1, pp. 65-68.


