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Slezská univerzita v Opavě
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systémech

Autoreferát dizertačńı práce
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Školitel: doc. RNDr. Marta Štefánková, Ph.D.
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1 Indroduction

The Thesis consists of three independent papers, [1],[2] and [3] (one
is published, one is accepted for publication and one is submitted),
which study some aspects of nonchaotic and chaotic behavior in discrete
dynamical systems. Throughout the Thesis we consider only discrete
dynamical systems generated by continuous maps of a compact metric
space, or especially of the unit interval, into itself.

The first part of the Thesis concerns with the iterative stability of
continuous functions of the interval with respect to small perturbations.
More precisely, we study the continuity structure of the map CR :
(C(I), || · ||) → (K, ρH), which maps f ∈ C(I) to the set CR(f) of
chain recurrent points of f .

In the next two parts we study chaotic behavior of discrete dynam-
ical systems. The second part solves a problem concerning iteration
invariants. Particularly, we show that if f is a DC3 continuous map of
a compact metric space then also fN is DC3, for every positive integer
N .

In the last part we study chaos in nonautonomous discrete dynami-
cal systems generated by sequences of continuous self-maps of the unit
interval. Especially we investigate connections between chaotic be-
havior of the nonautonomous discrete dynamical system and chaotic
behavior of its limit function. We show that even the full Lebesgue
measure of a distributionally scrambled set of the nonautonomous sys-
tem does not guarantee the existence of distributional chaos of the limit
map and, conversely, that there is a nonautonomous system with ar-
bitrarily small distributionally scrambled set that converges to a map
distributionally chaotic a.e.

2 Basic terminology and notation

Let (X, ρ) be a compact metric space, I = [0, 1] the unit interval,
N the set of all positive integers and C(X) the class of continuous self-
maps ofX. For any f ∈ C(X) the pair (X, f) is a discrete (autonomous)
dynamical system and, for any n ∈ N, by fn(x) we denote the nth
iteration of x under f . The trajectory of an x ∈ X is the sequence
{xn}∞n=0, where x0 = x and xn = fn(x). The set of all limit points of
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the trajectory of the x ∈ X is called the ω-limit set of x and it is denoted
by ω(x, f). A point x ∈ X is periodic of period n ∈ N if fn(x) = x and
f j(x) 6= x for j = 1, 2, · · · , n−1. By P (f), ω(f), NW (f) and CR(f) we
denote the set of periodic points of f , the union of ω-limit sets of f , the
set of non-wandering points of f , and the set of chain recurrent points
of f , respectively. Recall that x ∈ NW (f) if, for every neighborhood
U of x, there is an s ∈ N such that f s(U) ∩ U 6= ∅, and x ∈ CR(f) if
there is an ε-chain from x to itself for any ε > 0. An ε-chain from x to
y with respect to a function f is a finite set of points {x0, x1, · · · , xn}
in X with x = x0, y = xn and ρ(f(xk−1), xk) < ε. A point p ∈ I is an
essential periodic point of a map f ∈ C(I) of period n ∈ N if, in every
neighborhood of p there are points x, y with fn(x) > x and fn(y) < y.
A periodic orbit A of f with period n ∈ N is p-stable if, for every ε > 0
there is a δ > 0 such that every g ∈ C(I) with ‖f − g‖ < δ has a
periodic orbit B of period n satisfying ρH(A,B) < ε, where ρH denotes
the Hausdorff metric. We denote by S0(f) and S(f) the union of
essential periodic points, and p-stable periodic orbits of f , respectively.
Recall that, for every f ∈ C(I) and j ≥ 0, f j(S0(f)) ⊆ S(f), see
[SmSt]. Let us note that the sets ω(f), NW (f) and CR(f) are closed
in I and the relationship between them is as follows

S(f) ⊆ P (f) ⊆ P (f) ⊆ ω(f) ⊆ NW (f) ⊆ CR(f),

where P (f) is the closure of the set of periodic points.
We say that a map f is topologically transitive if for any nonempty

open sets A,B ⊂ X there is an n ∈ N such that fn(A) ∩ B 6= ∅,
a map f is bitransitive if f 2 is transitive. A function f ∈ C(X) is
conjugate to g ∈ C(X) if there is a homeomorphism h ∈ C(X) such
that f = h−1 ◦ g ◦ h.

The pair of points x, y is called a Li-Yorke pair, if

lim sup
n→∞

ρ(fn(x), fn(y)) > 0, and lim inf
n→∞

ρ(fn(x), fn(y)) = 0.

A set containing at least two points is called a LY-scrambled set, if any
pair of its distinct points forms a Li-Yorke pair. A map f ∈ C(X) is
chaotic in the sense of Li and Yorke, briefly LYC, if there exists an
uncountable LY-scrambled set S ⊂ X. Moreover it is extremely LYC,
if for any distinct points x and y from an uncountable LY-scrambled
set S,

lim sup
n→∞

ρ(fn(x), fn(y)) = diam(X), and lim inf
n→∞

ρ(fn(x), fn(y)) = 0.
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For any n ∈ N, points x, y ∈ X and t ∈ R, 0 < t ≤ diam (X), we
define

Φxy(t) = lim inf
n→∞

1

n
#{0 ≤ j < n; ρ(f j(x), f j(y)) < t}

and

Φ∗xy(t) = lim sup
n→∞

1

n
#{0 ≤ j < n; ρ(f j(x), f j(y)) < t}.

The functions Φxy,Φ
∗
xy : (0, diam X]→ [0, 1] are the lower and the up-

per distribution functions of x, y, respectively. There exist three types
of distributional chaos, DC1 - DC3. The pair of points x, y ∈ X such
that

Φ∗xy ≡ 1 and Φxy(t) = 0 for some t > 0, or (D1 )
Φ∗xy ≡ 1 and Φxy(t) < Φ∗xy(t) for all t in an interval, or (D2 )
Φxy(t) < Φ∗xy(t) for all t in an interval, (D3 )

is called distributionally chaotic of type 1-3, briefly D1, D2, or D3,
respectively. A set containing at least two points is called a distribu-
tionally scrambled set of type 1-3 if any pair of its distinct points is
distributionally chaotic of type 1-3, respectively. A map f ∈ C(X) is
distributionally chaotic of type 1-3, briefly DC1, DC2, or DC3, if there
exists an uncountable distributionally scrambled set S ⊂ X of type 1-3,
respectively. Let us recall that DC1 is the original version of distribu-
tional chaos and it was introduced for interval maps in [SSm]. Later
there were introduced two weaker versions of distributional chaos DC2
and DC3, see [BSS]. Directly from the definitions it follows that DC1
implies DC2 and DC2 implies DC3. Another terminology and notation
will be defined in the next parts in the appropriate places.

3 Chain recurrence

In this section we will work with two metric spaces. The first
space is (C(I), || · ||) with the metric of uniform convergence, the second
one, (K, ρH), is the class of nonempty closed subsets K of I with the
Hausdorff metric ρH . Recall that ρH(E,F ) is the minimal ε ≥ 0 such
that Bε(E) ⊇ F and Bε(F ) ⊇ E, where Bε(A) denotes the closed ε-
neighborhood of the set A. By C, ω, NW and CR we denote the map
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(C(I), || · ||)→ (K, ρH) which takes f ∈ C(I) to C(f), ω(f), NW (f),
and CR(f), respectively.

In recent years, there has been devoted attention to the study of
continuity and iterative stability of continuous self-maps of the unit
interval with respect to small perturbations. At the Twentieth Summer
Symposium in Real Analysis, A. M. Bruckner [Br] posed, among others,
a question, how the slight changes in the function affect the set of ω-
limit points and the collection of ω-limit sets. In general, only small
perturbations could affect dramatically both these sets. T. H. Steele
[St] has solved one of these problems by characterizing the points of
continuity of the map ω as the maps g ∈ C(I) whose p-stable periodic
orbits are dense in CR(g). Recently, J. Smı́tal and T. H. Steele [SmSt]
have proved that similar results are true for the maps C and NW .
We continue in their work and characterize those functions f ∈ C(I) at
which the map CR : (C(I), ||·||)→ (K, ρH), f 7→ CR(f), is continuous.

Theorem A. (See [1].) The map CR is continuous at g ∈ C(I) if

and only if S(g) = CR(g).

We perceive continuity of map CR at g as a form of stability of
the set of chain recurrent points at g. In light of this knowledge we
can say as a consequence of Theorem A and previous results that for
a continuous map g of the unit interval, either all of the maps C, ω,
NW and CR are continuous at g, or all these maps are discontinuous
at g.

4 Iteration invariants for distributional chaos

Recently, Li [Li] proved that, for f ∈ C(X), both DC1 and DC2
are iteration invariants, i.e., for any N ∈ N, f is DC1 (resp. DC2) if
and only if fN is also DC1 (resp. DC2). The natural question was
if it is true also for DC3. Li presented two examples supporting the
hypothesis that DC3 is the iteration invariant. More precisely, the
question was whether the following two implications are true
(1) If f is DC3, then fN is DC3, for every N ∈ N,
(2) If fN is DC3 for some N ∈ N, then f is DC3.
We proved the first of them.
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Theorem B. (See [2].) Let f be a continuous map of a compact
metric space X. If f is DC3 then, for every N ∈ N, fN is DC3.

Furthermore we showed that if we consider two points x, y ∈ X,
which generate DC3 for the N -th iteration of the map f , then, in
general, these two points do not generate DC3 for f . This obviously
does not disprove the second implication, that fN ∈ DC3 implies f ∈
DC3 . It only demonstrates, that if this result is true, the argument
would not be easy. Let us also note that if we would like to disprove
it, we would need to find an example of a map, which is DC3 but
not DC2. As we know, there are known only five examples of maps
f ∈ C(X) which are DC3 but not DC2, see [BSS], [Op], [PS], [Li],
[SM]. However, it seems that none of these examples can be modified
in order to disprove the implication fN ∈ DC3 ⇒ f ∈ DC3. We
conjecture that DC3 is an iteration invariant.

5 Chaos in nonautonomous discrete dynamical sys-
tems

The last section deals with nonautonomous discrete dynamical sys-
tems. A nonautonomous discrete dynamical system is a pair (X, f1,∞),
where f1,∞ ≡ {fn}n≥1 is a sequence of continuous maps fn ∈ C(I). The

trajectory of an x ∈ X in this system is the sequence {xn}∞n=0, where
x0 = x and xn = fn ◦ fn−1 ◦ · · · ◦ f1(x). If fn = f for every n ∈ N then
obviously nonautonomous dynamical system (X, f1,∞) becomes the au-
tonomous one (X, f). We consider a particular case of nonautonomous
discrete dynamical systems such that the sequence f1,∞ converges uni-
formly to a continuous map f and moreover, to avoid some pathological
cases, f and all maps in f1,∞ are surjective (without this assumption,
e.g., the single constant function added to f1,∞ can destroy even a very
complex behavior of f1,∞).

The study of the dynamical behavior of nonautonomous dynamical
systems is recently very intensive, because it appears in almost all
fields, where the dynamical progress is studied. One of the natural
questions, whether the simplicity of the limit function f implies the
simplicity of the nonautonomous system (I, f1,∞), was, in the case of
Li-Yorke chaos, already disproved in [FPS]. Later it was shown that
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the positive topological entropy of f implies Li-Yorke chaos of (I, f1,∞),
see [Ca]. There was also posed a question, if, in general, the chaoticity
of f always implies the chaoticity of (I, f1,∞).

Another interesting question to prove or disprove is whether the
full Lebesgue measure of a scrambled set of (I, f1,∞) implies chaoticity
of the limit function f , and conversely, if the chaoticity a.e. of map
f guarantees the chaoticity of (I, f1,∞). We have found two examples
of nonautonomous systems which show that, in general, there is no
connection between the “size” of the scrambled sets for (I, f1,∞) and
for its limit function f .

Theorem C. (See [3].) There is a surjective nonautonomous sys-
tem (I, f1,∞) such that, for every n ∈ N, (I, fn,∞) is distribution-
ally chaotic almost everywhere (the scrambled set is the whole inter-
val (0, 1)), and such that (I, f1,∞) uniformly converges to a nonchaotic
map f ∈ C(I).

Theorem D. (See [3].) There is a surjective nonautonomous sys-
tem (I, f1,∞) converging uniformly to a map f ∈ C(I), and such that
both (I, f) and (I, f1,∞) are LYC. Moreover, (I, f) has an (extremely)
scrambled set S of full Lebesgue measure, but every Li-Yorke scrambled
set of (I, f1,∞) has zero Lebesgue measure.

The idea of the proof is based on the fact, that every continuous bi-
transitive map of the interval is conjugate to a map extremely chaotic in
the sence of Li and Yorke a.e., see [Ba]. We construct a nonautonomous
system (I, f1,∞), such that any of its Li-Yorke scrambled sets has zero
Lebesgue measure, and it converges uniformly to the tent map τ , which
is bitransitive. Finally, let us remark, that a similar assertion holds for
distributional chaos, too: Every continuous bitransitive map of the in-
terval is conjugate to a map distributionally chaotic a.e., see [BaS].
Based on this fact we can state the following theorem.

Theorem E. (See [3].) There is a nonautonomous system (I, f1,∞)
such that f1,∞ is a sequence of surjective maps in C(I) converging uni-
formly to a map f ∈ C(I), and such that both (I, f) and (I, f1,∞) are
DC1. Moreover, (I, f) has a DC1-scrambled set S of full Lebesgue
measure, but every DC1-scrambled set of (I, f1,∞) has zero Lebesgue
measure.
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seńıky mountains, Czech Republic, September 6–13, 2009.

[8] International Conference on Difference Equations and Applica-
tions, Estoril, Portugal, October 19–23, 2009.
Talk: “Stability of chain recurrent points of a continuous map of
the interval”.

[9] 14th Czech-Slovak-Spanish Workshop on Discrete Dynamical Sys-
tems, La Manga del Mar Menor, Spain, September 20–24, 2010.
Talk: “On minimal points of commuting maps”.

15



[10] 15th Czech-Slovak Workshop on Discrete Dynamical Systems,
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