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1. Introduction

This research was started from a problem of differentiable Poisson brackets of coor-
dinates in mechanics [5]. The essence of this problem will be explained by the following
simple example. Consider a Lagrange functionλ ∈ C∞( j 1(R × R)), defined on the first
jet prolongation of the fibered manifoldR × R → R, which has in global coordinates
t, q, v the expression of

λ = 1

n
vn,
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wheren �= 0 is some real number. Using methods usual in analytical mechanics, we can
calculate the integral of motion

Q = q − v(t − T),

which has the meaning of the coordinate at timet = T , and the Poisson bracket

{Q, q} = (t − T)n−1(q − Q)2−n

n − 1
.

It is interesting that this Poisson bracket{Q, q} is as a function of variablest, q, Q in-
finitely differentiable only in the case ofn = 2, i.e. in the only physically important
case of all considered ones. Therefore, it would be interesting to find all Lagrange func-
tions which lead to infinitely differentiable Poisson brackets of coordinates for some
configuration manifold.

Unfortunately, this example has not a good geometrical sense. That is caused by
the fact that∂Q/∂v = 0 holds fort = T and thus the variablest, q, Q do not form
a suitable coordinate system for exploring the differentiability of Poisson brackets on
j 1(R × R). That is why the problem of differentiable Poisson brackets of coordinates
does not exist from the view of jet prolongations and symplectic manifolds. Therefore,
another geometrical structure must be introduced for its formulation. This paper shows
that an applicable structure is the manifold of geodesic arcs.

Section 2 is devoted to smooth manifolds of geodesic arcs. Necessary and sufficient
conditions for a set of arcs to be the set of all geodesic arcs of some linear connection
are presented. On this set a structure of a smooth manifold is introduced.

In Section 3 we recall the well-known definition of Poisson manifolds. In Section 4
a definition of a Poisson manifold of geodesic arcs is presented and studied. Local co-
ordinate expressions are given.

In Section 5 we recall the notion of a Frobenius algebra. In Section 6, necessary and
sufficient conditions are presented under which a given Lagrange function generates
a Poisson manifold of geodesic arcs. These conditions are framed in terms of tangent
and cotangent Frobenius algebras. Local expressions for general Poisson manifolds of
geodesic arcs are rather complicated. This section shows that they can be simplified if
the Poisson manifold is generated by some Lagrange function. Further, a second sim-
plification is found by changing contravariant velocities to covariant velocities. Expres-
sions for the Lagrange function and the corresponding linear connection are given.

In Section 7 a geometrical formulation and a solution of the problem of differentiable
Poisson brackets of coordinates in classical mechanics are presented. In this section a
concept of configuration in-out manifold is introduced as a Poisson manifold which
describes a relation between two configurations of a classical mechanical system. It is
shown that every in-out manifold is isomorphic to some Poisson manifold of geodesic
arcs. The corresponding general Hamilton function is presented.

Finally, relations between Poisson manifolds of geodesic arcs and classical Lagran-
gian mechanics are clarified in Section 8.

In this paper the notions of vector fields, linear connections, geodesics, Lagrangian
mechanics, Poisson manifolds, and Frobenius algebras are used in the usual sense (see,
e.g. [1], [2], [11], and [17]). By a manifold we mean a smooth manifold or a smooth
manifold with a boundary or a smooth manifold with corners (see [13], [15]). All used
mappings are smooth. In all local expressions we use the standard summation conven-
tion.
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2. Geodesic arcs

Let R be the manifold of real numbers. We consider a closed interval [0, 1] ⊂ R and
a finite-dimensional manifoldX. An arc γ on X is a smooth mappingγ : [0, 1]→ X. We
define areparametrizationas an affine mapping [0, 1] → [0, 1]. Let us consider amo-
noid M of all reparametrizationswith the multiplicationM × M � (µ, ν)→µ◦ν ∈ M .
We say that an arcγ ◦ µ, whereµ ∈ M , is asubarcof the arcγ .

Let W(X) be a set of arcs onX. We say thatW(X) is closed on subarcsif and only
if γ ∈ W(X) andµ ∈ M imply γ ◦ µ ∈ W(X). We say that an open setU ⊂ X is
convex with respect to W(X) if and only if

(i) for each two pointsa, b ∈ U there exists a unique arcγab ∈ W(X) such that
γab(0) = a, γab(1) = b, γab([0, 1]) ⊂ U ,

(ii) the mappingU × U × [0, 1] � (a, b, w) → γab(w) ∈ U is smooth.

We say thatX is locally convex with respect to W(X) if and only if for eachc ∈ X there
exists an open set U such thatc ∈ U ⊂ X, U is convex with respect toW(X).

Let us consider a smooth linear connection� on X. A geodesic arcof the connec-
tion � is an arc onX which is a geodesic of�. In 1932 J.H.C. Whitehead proved the
following Theorem on convex regions [18]:

Theorem 1. (Whitehead)Let W(X) be the set of all geodesic arcs of some linear
connection� on a manifold X. Then X is locally convex with respect to W(X).

In 1992 the author proved the following inversion of Whitehead’s Theorem on con-
vex regions [7]:

Theorem 2. Let W(X) be a set of arcs on a manifold X. The following two asser-
tions are equivalent:

1. There is a linear connection� on X such that W(X) is a set of all its geodesic
arcs,

2. W(X) is a maximal set of arcs on X satisfying the conditions:
(a) X is locally convex with respect to W(X),
(b) W(X) is closed on subarcs.

Let us suppose that the assertion 2 of Theorem 2 is satisfied. From the condition (b)
we have that the monoidM acts onW(X) from right in the following way

R: W(X) × M � (γ, µ) → γ ◦ µ ∈ W(X).

The global chartM � µ → (µ(0), µ(1)) ∈ [0, 1] × [0, 1] defines a structure of a man-
ifold on M in such a way that the multiplication is smooth. Therefore, the monoid
of reparametrizationsM with the above defined structure is the Lie monoid. It is
known (see, e.g. [11]) that there exists a bijective mappingψ : W(X) � γ → γ̇ (0) ∈
codomψ ⊂ T X, whereγ̇ : [0, 1] → T X is the prolongation of the geodesic arcγ on
the tangent bundleT X. The setW(X), equipped with a structure of a manifold such
thatψ is a diffeomorphism, is called amanifold of geodesic arcs. The simplest example
of a manifold of geodesic arcs is the monoid of reparametrizationsM = W([0, 1]) in
itself.
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Since every mappingγ ∈ W(X) is smooth, we see that the actionR is smooth too.
We shall use a partial mapping

Rµ: W(X) � γ → γ ◦ µ ∈ W(X).

The actionR of the Lie monoid of reparametrizationsM is of fundamental importance
in the theory of geodesic arcs. Theorem 2 shows that the notion of a symmetric linear
connection may be defined with the help ofR.

Let us consider two manifolds of geodesic arcsW(Y) and W(X). Any mapping
π : Y → X, such thatγ ∈ W(Y) impliesπ ◦ γ ∈ W(X), defines a mapping

Lπ : W(Y) � γ → π ◦ γ ∈ W(X)

of manifolds of geodesic arcs. Moreover, ifY is a fibered manifold over the base
X with the projectionπ then W(Y) is a fibered manifold over the baseW(X) with
the projectionLπ . In such a caseW(Y) is called afibered manifold of geodesic arcs
Lπ : W(Y) → W(X).

3. Poisson manifolds

Let us consider a finite-dimensional manifoldP. A Poisson algebra over Pis a Lie
algebra structure onC∞(P) that satisfies theLeibniz condition

{FG, H} = F{G, H} + G{F, H}.
A Poisson bracket{ · , · } is the Lie bracket of the corresponding Poisson algebra. A
Casimir functionin a Poisson algebra overP is a functionF ∈ C∞(P) such that
{F, G} = 0 for all functionsG ∈ C∞(P). A Poisson manifoldis a manifoldP with a
Poisson algebra overP (see, e.g. [4], [14], [16], [17]). APoisson mappingis a homo-
morphism of Poisson manifolds.

A Poisson submanifold Qis a submanifoldQ in a Poisson manifoldP with a Poisson
algebraC∞(Q) for which the inclusionQ → P is a Poisson mapping.

Important particular examples of Poisson manifolds aresymplectic manifolds. Op-
posite examples areAbelian Poisson manifolds, Poisson algebras of which are Abelian.

4. Poisson manifolds of geodesic arcs

Let W(X) be a manifold of geodesic arcs. APoisson right M-algebra over W(X) is
a Poisson algebra overW(X) such that for eachµ ∈ M a mappingC∞(W(X)) � F →
F ◦ Rµ ∈ C∞(W(X)) is an endomorphism. APoisson manifold of geodesic arcsis a
manifold of geodesic arcs equipped with a Poisson rightM-algebra. Similarly, afibered
Poisson manifold of geodesic arcsis a fibered manifold of geodesic arcs equipped with
a Poisson rightM-algebra. In 1994 the author proved the following Theorem [8]:

Theorem 3. Let W(X) be a manifold of geodesic arcs of a symmetric linear connec-
tion � on X. Then there exists a bijective correspondence between the set of all Poisson
right M-algebras over W(X) and the set of all ordered pairs(g, h) of tensor fields on
X satisfying the following three conditions:
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1. g is a tensor field of the type(2, 1),
2. h is a tensor field of the type(2, 0),
3. in each local chart on X the components gi j

k , hi j satisfy the relations:

hi j + h ji = 0,(1)

hil h jk
l + h jl hki

l + hklhi j
l = 0,(2)

gil
mgjk

l − gjl
m gik

l + gik
mlh

l j − gjk
mlh

li = glk
mhi j

l + Rk
mlr h

li hr j ,(3)

gi j
k − gji

k = hi j
k ,(4)

gi j
kl + gi j

lk + gji
kl + gji

lk = (Ri
klm + Ri

lkm)hmj + (Rj
klm + Rj

lkm)hmi,(5)
1
2 (hi j

lm + hi j
ml + Ri

lmkh
k j + Ri

mlkh
k j − Rj

lmkh
ki − Rj

mlkh
ki )r

+ 1
2 (hi j

mr + hi j
rm + Ri

mrkh
k j + Ri

rmkh
k j − Rj

mrkh
ki − Rj

rmkh
ki )l

+ 1
2(h

i j
rl + hi j

lr + Ri
rlk hk j + Ri

lrk hk j − Rj
rlk hki − Rj

lrk hki )m(6)

= (Ri
mrk + Ri

rmk)g
kj
l + (Ri

rlk + Ri
lrk )gkj

m + (Ri
lmk + Ri

mlk)g
kj
r

− (Rj
mrk + Rj

rmk)g
ki
l − (Rj

rlk + Rj
lrk )gki

m − (Rj
lmk + Rj

mlk)g
ki
r ,

where Ri
jkl are components of the Riemannian tensor field of the connection� and

the lower indices which does not belong to the indexation of tensors g, h denote the
corresponding covariant derivatives.

Local coordinate expressions for Poisson manifolds of geodesic arcs are

{xk, xl } = hkl,(7)

{xk, ẋl } = (gkl
m − hkn�l

mn) ẋm,(8)

{ẋk, ẋl } = (
1
2 hmkRl

nrm − 1
2 hml Rk

nrm − 1
2 hkl

nr

+ gmk
r �l

nm − gml
r �k

nm + hms�k
mn�

l
sr

)
ẋn ẋr ,

(9)

wherexk, ẋk are standard local coordinates onW(X) and�k
lm are components of the

connection� on X.
The simplest example of a Poisson manifold of geodesic arcs is the monoid of repara-

metrizationsM . From Theorem 2 and formula (5) we get�=0 andg=const. Ifw is the
identical coordinate on [0, 1], then the Poisson structure onM is given by{w, ẇ}=gẇ.

5. Frobenius algebras

An algebraA is a finite-dimensionalR-moduleA together with a bilinear multipli-
cationA × A → A which makesA into an associative ring with a unity element. A
structure tensorof A is the tensor of the type(2, 1) associated with this multiplication.
An algebraA is calledcommutativeif A is a commutative ring.

Any algebraA is a left A-module. The dualR-moduleA
∗, equipped with the mul-

tiplication A × A
∗ � (a, ω) → (A � b → ω(ba) ∈ R) ∈ A

∗, is a leftA-module as
well. An algebraA is a Frobenius algebraif and only if there exists an isomorphism
g : A → A

∗ of these leftA-modules. The leftA-moduleA
∗, equipped with the mul-

tiplication A
∗ × A

∗ → A
∗ such thatg is an isomorphism of algebras, will be called a
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dual Frobenius algebra ofA. The unity element in the dual Frobenius algebraA
∗ will

be denoted by〈 · 〉: A � a → 〈a〉 ∈ R.
Let A be an algebra. Denote by exp the mapping that takes each pointa ∈ A to

y(1) ∈ A, wherey: R → A is the solution of the differential equationdy/dτ = ay
under the conditiony(0) = 1. The mapping exp exists and the solutiony is given by
y: R � τ → exp(τa) ∈ A. Moreover, the mapping exp is a local diffeomorphism.
This means that for anyb ∈ A there is a neighborhoodV � b such that the mapping
V � a → expa ∈ expV is a diffeomorphism. Therefore, we can locally define a
smooth mapping ln: expV → V by the formula ln◦ exp|V = idV .

A vector bundleZ → X is called afibration of algebrasif and only if any fiber
of Z is an algebra and the corresponding structure tensor field is smooth. Over the
manifoldX we shall consider partly a fibration of tangent algebrasT X partly a fibration
of cotangent algebrasT∗X.

If gi j
k are components of a cotangent commutative algebra structure tensor field, then

the commutativity gives

(10) gi j
k = gji

k ,

and the associativity gives

(11) gml
i g jk

m = gjm
i gkl

m .

There exists a differential invariant of a structure tensor field. This invariant is a
tensor field of the type(3, 2). Its components are

(12)
Jilm

jk = gil
s

∂gsm
j

∂xk + gim
s

∂gsl
j

∂xk + gsi
k

∂glm
s

∂x j + gsi
j

∂glm
k

∂xs + gsl
j

∂gim
k

∂xs + gsm
j

∂gil
k

∂xs

− gil
s

∂gsm
k

∂x j − gim
s

∂gsl
k

∂x j − gsi
j

∂glm
s

∂xk − gsi
k

∂glm
j

∂xs − gsl
k

∂gim
j

∂xs − gsm
k

∂gil
j

∂xs ,

wherexi are local coordinates onX. It is easy to prove that (10), (11), (12) imply
Jilm

jk = Jlim
jk = Jiml

jk = −Jilm
k j .

6. Generating Lagrange functions

Let X be a configuration manifold,T X be the corresponding tangent bundle with the
projectionπ : T X → X. Let us consider a smooth regular Lagrange functionL, where
domL ⊂ T X is an open submanifold equipped with the canonical symplectic structure,
codomL = R. Any mapping [0, 1] → X satisfying the corresponding Euler–Lagrange
equations is called anextremal arcof the Lagrange functionL.

Let WL(X) be the set of all extremal arcs ofL. The setWL(X), equipped with
a symplectic structure such that the bijective mappingψL : WL(X) � γ → γ̇ (0) ∈
codomψL ⊂ domL is an isomorphism of symplectic manifolds, is called asymplectic
manifold of extremal arcs.

We say that the Lagrange functionL generatesa Poisson manifold of geodesic arcs
W�(X) if and only if

(i) WL(X) ⊂ W�(X) is a symplectic submanifold,
(ii) WL(X) � γ → γ (0) ∈ X is a surjective mapping.
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Let us remark that using local expressions (7)–(9) we get the following two asser-
tions: No Poisson manifold of geodesic arcs is symplectic, soWL(X) �= W�(X). If L
is a Lagrange function satisfying (ii), then there exists at most one Poisson manifold of
geodesic arcs satisfying (i).

In 1998 the author proved the following Theorem [10]:

Theorem 4. A given smooth Lagrange function L,domL ⊂ T X, codomL = R,
generates a Poisson manifold of geodesic arcs if and only if the three following condi-
tions hold:

1. there exists a fibration of tangent commutative Frobenius algebras T X such that
for everyv ∈ codomψL

(13) L(v) = 〈 v ( ln v − 1) 〉 + const,

2. there exists a fibration of dual Frobenius algebras T∗X such that the differential
invariant (12) is zero,

3. π(codomψL) = X.

If a given Lagrange function generates a Poisson manifold of geodesic arcs, we
can, using (13), calculate local expressions for the tensorsg, h, and the connection�
satisfying (1)–(9). We geth = 0, g is the cotangent algebra structure tensor field, and

(14)

�i
jk = 1

2
gil

(
∂gl j

∂xk + ∂gkl

∂x j − ∂gjk

∂xl

)

− 1

2
gil gjr gks

(
gm ∂grs

l

∂xm + ∂gm

∂xl grs
m − ∂gr

∂xm gms
l − ∂gs

∂xm grm
l

)
,

wherexi are local coordinates onX, gk are components of the tangent algebra unity
element field,gi j = gi j

k gk, gi j ’s make the solution of equationsgi j g jk = δk
i , δk

i is
the Kronecker symbol. Formula (14) was originally proved in the paper [6], but the
calculation given in [9] is easier. It is readily seen that if the Lie derivative in the second
term equals zero, then� is the Levi-Civita connection andgi j are components of a
contravariant metric tensor.

The local expressions for the Poisson manifold of geodesic arcs generated by some
Lagrange function are

(15)

{xk, xl } = 0,

{xk, ẋl } = gkl
r ẋr ,

{ẋk, ẋl } = (
gkm

r �l
sm − glm

r �k
sm

)
ẋr ẋs.

The paper [9] shows that they can be simplified by changing contravariant velocitiesẋk

to covariant velocitieṡxk = gkl ẋl :

{xk, xl } = 0,

{xk, ẋl } = gkr
l ẋr ,

{ẋk, ẋl } = 1

2

(
∂grs

k

∂xl − ∂grs
l

∂xk

)
ẋr ẋs.
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7. In-out manifolds

The notion of an in-out manifold was introduced by the author in 1989 for solving
the problem of finding the most general form for Poisson brackets of configuration
coordinates at two different times in Hamiltonian mechanics.

Let P be a Poisson manifold. The Leibniz condition implies that the bracket oper-
ation is a derivation in each entry, and so in particular, for each functionF ∈ C∞(P)

there is a vector fieldξF ∈ X(P) such that∂ξF G = {G, F} for all G ∈ C∞(P),
where∂ξF denotes a Lie derivative with respect toξF . The local flow of this vector
field αF : (−ε, +ε) × P → P is called alocal flow generated by the function F. If the
local flow αF exists, then the partial mappingαF

τ : P → P is the Poisson one for all
τ ∈ (−ε, +ε).

A configuration of a Hamiltonian mechanical system is represented by a point of
its configuration manifoldX. A state of system is described by a point of a cotangent
bundleT∗X. The cotangent bundle is a symplectic manifold and the configuration man-
ifold is an Abelian Poisson manifold. Thus a natural projectionT∗X → X is a Poisson
mapping. A dynamical evolution manifests itself as a local flowαH generated by a
Hamiltonian functionH . We need the configuration at two times. So we introduce a
manifold X × X and denote natural projections on its factors as “in” and “out”.

We say that a Poisson manifoldX × X is a configuration in-out manifoldif there
exists a regular Hamiltonian functionH ∈ C∞(T∗X) and a real numberε > 0 such
that a mappingT∗X → X × X defined by the commutative diagram

T∗X
αH

τ1←−−− T∗X
αH

τ2−−−→ T∗X� � �
X

in←−−− X × X
out−−−→ X

is a Poisson mapping for any pairτ1, τ2 ∈ (−ε, +ε). Let us remark that ifX × X is a
configuration in-out manifold, then all mappings in the diagram are Poisson ones.

In 1989 the author proved the following theorem [6]:

Theorem 5. If b is a point in a diagonal of in-out manifold X× X, then there is a
chart (xk, ẋk) in b such that(14) and (15) hold, where xk, gkl

r , gk are functions on X
composed with the projectionout.

From Theorems 3 and 5, every in-out manifoldX× X is isomorphic to some Poisson
manifold of geodesic arcsW(X). Since the Hamilton functionH is regular, there exists
the Lagrange functionL generatingW(X). Using Theorem 4, we can calculate

H(p) = 〈 exp(p) 〉 − const,

where exp and〈 · 〉 are defined on the fibration of cotangent algebrasT∗X.

8. Relations to classical mechanics

For a geometric formulation of the first order Lagrangian theory the formalism of
fibered manifolds and theirs lower two prolongations is used (see [12]). In the case
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of mechanics, we consider a fibered manifoldπ0: R ×X → R, whereR is the man-
ifold of real numbers andX is a finite-dimensional manifold, with its prolongations
j 1(R ×X), j 2(R ×X) and projectionsπ1: j 1(R ×X) → R, π10: j 1(R ×X) → R ×X,
π21: j 2(R ×X) → j 1(R ×X), π20: j 2(R ×X) → R ×X. We shall use the fiber charts
with coordinatesτ , xk, ẋk, ẍk. A time evolution of mechanical system is described by a
local sectionσ of the fibered manifoldπ0 which is a solution of Euler–Lagrange equa-
tions

(16) εk ◦ j 2σ = 0.

Here Euler–Lagrange expressionsεk are components ofπ20-horizontal 1-contact differ-
ential 2-form onj 2(R ×X) such that a Lagrange functionλ satisfying

(17) εk = d

dτ

(
∂λ

∂ ẋk

)
− ∂λ

∂xk
,

whered/dτ is the total derivative, locally exists. Here, in contrast to Section 6, the
Lagrange functionλ is the component of theπ1-horizontal differential 1-form on
j 1(R ×X). Note that by the usual notation practice in the classical mechanics all nec-
essary projections are omitted (for instance, the restriction of projectionπ21 absents in
the second term of the right-hand side of (17)).

Equations (16) are said to beclassical Euler–Lagrange equationsif and only if the
corresponding Lagrange function has the form

(18) λ = 1
2 gkl ẋk ẋl + Ak ẋk + ϕ,

wheregkl , Ak, andϕ are functions onR ×X. This case is the most spread one in ap-
plications and all the known physically important mechanical systems can be converted
into it [3].

We suppose that the Euler–Lagrange expressions are regular, that is, for each point
of j 2(R ×X) the determinant

(19) det

(
∂εk

∂ ẍl

)
�= 0.

Let us consider a setE(R ×X) of all solutionsσab: [a, a + b] → R ×X of equa-
tions (16), wherea, b ∈ R, b > 0. Then there exists a bijectionχ : E(R ×X) � σab →
(b, j 1σab(a)) ∈ codomχ ⊂ (0, ∞)× j 1(R ×X), where codomχ is an open subset. The
Poisson structure of this manifold can be found by the methods of classical mechanics.
From classical canonical relations

{xk, xl } = 0,

{
xk,

∂λ

∂ ẋl

}
= δk

l ,

{
∂λ

∂ ẋk
,

∂λ

∂ ẋl

}
= 0

we obtain

{xk, xl } = 0,

{xk, ẋm} ∂εl

∂ ẍm
= δk

l ,

{ẋk, ẋl } ∂εr

∂ ẍk

∂εs

∂ ẍl
= 1

2

(
∂εs

∂ ẋr
− ∂εr

∂ ẋs

)
.
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Note that in the classical mechanics the coordinates onR and(0, ∞) are considered
as Casimir functions. The setE(R ×X), equipped with a Poisson algebra such thatχ is
an isomorphism of Poisson manifolds, will be called aPoisson manifold of solutions of
Euler–Lagrange equations.

In 1995 the author proved the following Theorem on the relation between Poisson
manifolds of solutions of Euler–Lagrange equations and Poisson manifolds of geodesic
arcs in classical mechanics [8]:

Theorem 6. Let W(R ×X) → W(R) be a fibered Poisson manifold of geodesic arcs
such that all fibers are Poisson submanifolds, fibers over constant arcs are Abelian,
and fibers over non-constant arcs are symplectic. Then W(R ×X) is the union of three
disjoint Poisson submanifolds such that the two of them are isomorphic to a Poisson
manifold of solutions of classical Euler–Lagrange equations and the third of them is an
Abelian fibration of manifolds of geodesic arcs of Levi-Civita connections on X.

Proof. Let us consider a local chartx on R ×X such thatx0 is a coordinate onR,
x1, x2, . . . , xdim X are coordinates onX, and codomx is an open ball inRdim X+1. Since
W(R ×X) is a fibered manifold of geodesic arcs over the baseW(R), we getRi

jkl = 0
for i = 0. Hence, the coordinatex0 may be chosen in such a way that fori = 0

(20) �i
jk = 0.

Since the fibers over constant arcs are Abelian, by (7) and (8) we obtainhi j = 0,
gi j

k = 0, wherek �= 0. Since the fibers over non-constant arcs are Poisson submanifolds,
by (8) we obtaingi 0

0 = g0i
0 = 0.

Throughout all the following text we will not consider the zero value of indicesi , j ,
k, l , m, r , s. We denotegi j

0 = gi j andx0 = τ . Taking into account that the fibers over
non-constant arcs are symplectic we obtain

(21) det(gi j ) �= 0

at each point ofX. Relations (1)–(3) are fulfilled identically. Relation (4) gives
gi j = gji . Relation (5) can be expressed in the form

∂gi j

∂xk
+ �i

kmgmj + �
j
kmgim = 0,

∂gi j

∂τ
+ �i

0mgmj + �
j
0mgim = 0.

From this, by a straightforward computation we get

�i
jk = 1

2
gil

(
∂gl j

∂xk
+ ∂gkl

∂x j
− ∂gjk

∂xl

)
,(22)

�i
j 0 = �i

0 j = 1

2
gil

(
∂gl j

∂τ
+ �l j

)
,(23)

wheregi j ’s make the solution of equationsgi j g jk = δk
i and�i j are functions on domx

such that�i j + � j i = 0. Relation (6) can be written according to (22) and (23) in the
form

∂�i j

∂xk
+ ∂� jk

∂xi
+ ∂�ki

∂x j
= 0,

∂�i j

∂τ
+ ∂Fj

∂xi
− ∂Fi

∂x j
= 0,



Poisson manifolds of geodesic arcs in classical mechanics 11

where Fi = gi j �
j
00. Thence the Poincaré lemma enables us to show that there exist

functionsAi , ϕ on domx satisfying

(24) �i j = ∂ Ai

∂x j
− ∂ Aj

∂xi
, Fi = ∂ Ai

∂τ
− ∂ϕ

∂xi
.

Since the Lagrange function (18) exists onj 1(domx), the components

εk = gkl(ẍ
l + �l

rsẋr ẋs) +
(

∂gkl

∂τ
+ �kl

)
ẋl + Fk

of a π20-horizontal 1-contact differential 2-form onj 2(R ×X) are Euler–Lagrange ex-
pressions. According to (19) and (21) they are regular. Let us denote the corresponding
manifold of solutions of Euler–Lagrange equations byE(R ×X).

In view of (20)W(R) = W1(R)∪W2(R)∪W3(R), whereW1(R) is the open subman-
ifold of all increasing geodesic arcs,W2(R) is the open submanifold of all decreasing
geodesic arcs, andW3(R) is the closed submanifold of all constant geodesic arcs. Let us
decompose the manifoldW(R ×X) into the three disjoint submanifoldsW1(R ×X) =
L−1

π0
(W1(R)), W2(R ×X) = L−1

π0
(W2(R)), andW3(R ×X) = L−1

π0
(W3(R)), whereLπ0 is

the projectionW(R ×X) � γ → π0 ◦ γ ∈ W(R). These submanifolds are Poisson ones
because ofW1(R ×X), W2(R ×X) are open ones andW3(R ×X) is by assumption the
union of Abelian Poisson manifolds over constant geodesic arcs. Clearly,W3(R ×X) is
an Abelian submanifold too.

Let us supposeγ ∈ W1(R ×X). Then there exists a unique mappingσ such that
domσ = codom(π0 ◦γ ), γ = σ ◦π0 ◦γ . It holdsσ ∈ E(R ×X). The induced mapping
W1(R ×X) → E(R ×X) is an isomorphism of Poisson manifolds.

Let us supposeγ ∈ W2(R ×X) and define the mappingµ: [0, 1] � w → (1 − w) ∈
[0, 1]. In such a caseγ ◦ µ = Rµ(γ ) ∈ W(R ×X). Sinceπ0 ◦ γ andµ are decreasing
mappings,π0 ◦ γ ◦ µ is an increasing mapping and soγ ◦ µ ∈ W1(R ×X). SinceRµ

is a Poisson mapping and sinceR−1
µ = Rµ holds, the mappingW2(R ×X) � γ →

γ ◦ µ ∈ W1(R ×X) is an isomorphism of Poisson manifolds. Consequently, the fact
that there is an isomorphism betweenW1(R ×X) and E(R ×X) implies the existence
of isomorphism betweenW2(R ×X) andE(R ×X).

For eacha ∈ R the setπ−1
0 (a) ⊂ R ×X is a geodesic submanifold diffeomor-

phic to X. According to (22) the connection onπ−1
0 (a) is the Levi-Civita one. Let

W(π−1
0 (a)) be the manifold of geodesic arcs of this connection. Taking into account

W3(R ×X) =
⋃
a∈R

W
(
π−1

0 (a)
)
,

we see thatW3(R ×X) is the Abelian fibration of manifolds of geodesic arcs of Levi-
Civita connections onX over the baseR. This completes the proof.

Theorem 7. Let X be a simply connected manifold, W(R ×X) → W(R) be a
fibered Poisson manifold of geodesic arcs satisfying the conditions of Theorem6.
Then there exists a Lagrange function generating a Poisson manifold of geodesic arcs
W(R ×X × [0, 1]) such that

1. W(R ×X × [0, 1]) → W(R ×X) is a fibered Poisson manifold of geodesic arcs,
2. the fiber over any constant arc is an Abelian Poisson submanifold isomorphic to

the monoid of reparametrizations.
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Proof. Let W1(R) ⊂ W(R) be the open submanifold of all increasing geodesic arcs,
W1(R ×X) ⊂ W(R ×X) be the open submanifold overW1(R), WL(R ×X × [0, 1]) ⊂
W(R ×X × [0, 1]) be the submanifold of all geodesic arcs

[0, 1] � w → (γ (w), µ(w)) ∈ (R ×X) × [0, 1],

whereγ ∈ W1(R ×X), µ ∈ M . Let domL ⊂ T(R ×X × [0, 1]) be the submanifold
such thatWL(R ×X × [0, 1]) � γ → γ̇ (0) ∈ domL is a bijection. Let us consider a
Lagrange functionL: domL → R given by local coordinate expressions

(25) L = ẇ ln τ̇ +
1
2 gkl ẋk ẋl + Ak ẋk τ̇ + ϕ τ̇ 2

τ̇
,

whereτ̇ , ẋk, ẇ are the standard tangent coordinates associated with local coordinates
τ, xk, w onR ×X × [0, 1], such thatτ is a geodesic coordinate onR, xk are coordinates
on X, andw is the identical coordinate on [0, 1], functionsgkl, Ak, ϕ are solutions of
equationsgi j g jk = δk

i and (24). SinceX is a simply connected manifold, the mentioned
Lagrange function on domL globally exists.

By a straightforward computation it follows that the Lagrange function (25) gen-
erates a Poisson manifold of geodesic arcsW(R ×X × [0, 1]) satisfying conditions 1
and 2. This completes the proof.

Finally note that the bilinear multiplication� in fibration of cotangent Frobenius
algebras is given by relations

(26)
dτ � dτ = 0, dτ � dxj = 0, dτ � dw = dτ,

dxi � dτ = 0, dxi � dxj = gi j dτ, dxi � dw = dxi ,

dw � dτ = dτ, dw � dxj = dxj , dw � dw = dw,

and the tangent algebra unity element field has the form

(27)
∂

∂τ
+ Ai ∂

∂xi +
(

1

2
Ai Ai − ϕ

)
∂

∂w
,

whereAi = gi j Aj . By (13), formula (25) is equivalent to (26) and (27).
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Luboḿır Klapka
Mathematical Institute
Silesian University in Opava
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