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1. Introduction

This thesis is based on three independent papers [44], [45] and [46]. Their common sub-

ject are Hamiltonian structures and associated Hamiltonian and bi-Hamiltonian evolutionary

partial differential equations. All three papers constitute an integral part of the thesis.

The first paper “The Darboux coordinates for a new family of Hamiltonian operators and

linearization of associated evolution equations” was published in Nonlinearity in 2011 (see

[46]) as well as the second paper entitled “A complete list of conservation laws for non-

integrable compacton equations of K(m,m) type,” published in 2013 (see [44]). The third

paper “Low-order Hamiltonian operators having momentum” was published in the Journal

of Mathematical Analysis and Applications in 2013 (see [45]). All of these three papers

contain new results in the theory of Hamiltonian evolutionary partial differential equations.

Informally, a Hamiltonian structure for a system of PDEs is just an operator giving rise

to a Lie algebra structure (the Poisson bracket) on a suitable space of functionals. Its

significance stems inter alia from the fact that for a Hamiltonian system the Poisson bracket

of two conserved quantities is again a conserved quantity, see below for details. Moreover, as

explained below, Hamiltonian structures provide a correspondence among conservation laws

(and more broadly, cosymmetries) and symmetries. This correspondence plays an important

role in the study of qualitative properties of the solutions of Hamiltonian systems (e.g.

stability thereof) and frequently has deep consequences in physics.

The general theory of Hamiltonian structures (also known as Poisson structures) for finite-

dimensional dynamical systems in their general form without relying on the canonical coor-

dinates dates back to Sophus Lie (see e.g. the discussion in Chapter 6 of [29]). The extension

to the case of systems of evolutionary PDEs goes back to the work of V.I. Arnol’d [1, 2] on the

Hamiltonian structure of the Euler equations and to the discovery of Hamiltonian structure

of the celebrated Korteweg–de Vries equation by C. Gardner [16]. Since then the subject

underwent a very intense development which hardly lends itself to a reasonably concise de-

scription; see e.g. the monographs [4], [9], [10], [13], [19], [28], [29] and references therein.

We only mention here the Dirac structures, an important and very broad generalization of

Hamiltonian structures introduced by Dorfman [10].

The interest of international mathematical and mathematical physics communities in the

theory of Hamiltonian and bi-Hamiltonian structures and the systems of partial differential

equations related to these structures remains steadily high and was further increased by the

recent advances in the field made by V. G. Kac et al. (see e.g. [7, 8] and references therein)

using the Dirac structures and the so-called Poisson vertex algebras.

The bi-Hamiltonian systems, introduced by F. Magri [20], i.e., the systems admitting

a pair of substantially different Hamiltonian operators (the so-called Hamiltonian pair),

deserve special attention. Such systems are usually integrable, which in particular means
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that a sufficiently rich set of their solutions can be found. Bi-Hamiltonian systems occur in

many areas, e.g. in mechanics, hydrodynamics, electrodynamics and others. This is one of

the main reasons of interest in classification and study of the Hamiltonian operators: this

can lead to new Hamiltonian pairs and hence to new integrable systems.

The theory of Hamiltonian and bi-Hamiltonian structures was developed by many math-

ematicians and physicists, in particular, V. I. Arnol’d, I. Dorfman, V. G. Drinfeld, B. A.

Dubrovin, L. D. Faddeev, A. S. Fokas, I. M. Gel’fand, V. G. Kac, F. Magri, S. P. Novikov,

P. J. Olver, V. E. Zakharov and others.

The two subsequent sections are of introductory nature and closely follow [29].

2. Basic definitions and notation

Throughout the thesis we work with Hamiltonian operators and Hamiltonian differential

evolution equations in jet spaces. The introduction of jet spaces allows us to look at differ-

ential equations as algebraic ones. Below we shall not discuss the fairly sophisticated theory

of jet bundles that occurs in the geometric theory of partial differential equations. Instead

we define the jet space just in coordinates. Unless otherwise explicitly stated, all objects

below will be assumed to be smooth.

Definition 1. Let X ' Rp and U ' Rq be vector spaces with the coordinates x1, . . . , xp ∈ R
and u1, . . . , uq ∈ R respectively. Let J = (j1, . . . , jk) with 1 ≤ jk ≤ p be a multi-index of

order |J | = k. Let Uk ' Rq·pk , where pk =

(
p+ k − 1

k

)
, be a vector space with the

coordinates uαJ , |J | = k, α ∈ {1, 2, . . . , q} . The space

X × U (n) = X × U × U1 × · · · × Un

is then called the jet space of the n-th order.

Note that in the case q = 1, p = 1 the coordinates in the jet space of the n-th order are

also denoted by x, u, ux, uxx, uxxx, . . . , un·x or x, u, u1, u2, u3, . . . , un.

The coordinates on the n-th order jet space represent the independent variables, the

dependent variables and the derivatives of the dependent variables with respect to the in-

dependent variables up to the order n. The n-th prolongation of a function f : X → U

is a function pr(n)f : X → U (n), the coordinates of pr(n)f(x) being uαJ = ∂Jf
α(x), where

∂J = ∂kfα

∂xj1 ...∂xjk
and J = (j1, . . . , jk). In many cases it suffices to consider only an open subset

M (n) = {(x, u(n)) ∈ X × U (n), (x, u) ∈M ⊂ X × U} of the n-th order jet space.

A smooth function P = P (xi, u
α, uαJ) which depends on the independent variables, the

dependent variables and finitely many derivatives of dependent variables with respect to

independent variables is called a differential function. It is easily seen that each differential

function is a function P : M (k) → R, for some k ∈ N∪{0}, where the smallest such k is called

the order of the differential function P and is denoted as ord P . If we are not interested in
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how many derivatives P depends on we write simply P = P [u]. The set A of all differential

functions carries the structure of a ring with the multiplication of differential functions.

Recall briefly several important operators defined on A. The total derivative Dxj : A→ A

with respect to the independent variable xj is defined as

Dxj :=
∂

∂xj
+

q∑
α=1

∑
J

uαJ,j
∂

∂uαJ
,

where uαJ,j is defined as uαJ,j =
∂uαJ
∂xj

. Note that if P = P [u] is a differential function then the

sumDxj(P ) is actually finite, so no convergence issues arise. The total derivative DJ : A→ A

with respect to a multi-index J = (j1, . . . , jk) is defined as DJ = Dxj1
◦Dxj2

◦ · · · ◦Dxjk
.

The Euler–Lagrange operator E : A → Aq is a q-tuple of operators E = (E1, . . . , Eq),

where each Eα is an operator Eα : A→ A defined as

Eα :=
∑
J

(−D)J ◦
∂

∂uαJ
,

where (−D)J = (−1)|J | ·Dxj1
◦Dxj2

◦ · · · ◦Dxjk
for J = (j1, j2, . . . jk). The total divergence

operator is the operator Div : Ap → A defined for any p-tuple of differential functions

(P1, . . . , Pp) ∈ Ap as

Div(P1, . . . , Pp) := Dx1(P1) +Dx2(P2) + · · ·+Dxp(Pp).

Let D =
∑

J PJ [u]DJ : A→ A be a linear operator. The adjoint operator to the operator D

is an operator D∗ : A→ A which satisfies (see e.g. [29])∫
Ω

R ·D(S)dx =

∫
Ω

S ·D∗(R)dx

for all differential functions R, S ∈ A that vanish for u ≡ 0, for every domain Ω ⊂ Rp and

every function u = f(x) with compact support in Ω. By easy computations it can be verified

that

D∗ =
∑
J

(−D)J ◦ PJ ,

which means that for any differential function Q ∈ A the equality D∗(Q) =
∑

J(−D)J(PJ ·Q)

holds.

The notion of the adjoint operator can be easily extended to the case of matrix differential

operators in the following way. Let D : Aq → Aq be a matrix differential operator with

entries Dkl. Then the adjoint operator D∗ : Aq → Aq is a matrix differential operator with

entries D∗kl = (Dlk)
∗.

Let P = (P1, . . . , Pr) ∈ Ar be an r-tuple of differential functions. The Fréchet derivative

of the vector function P is a differential operator DP : Aq → Ar such that

DP (Q) =
d

dε

∣∣∣∣
ε=0

(P [u+ εQ[u]]) .
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It is easily seen that the operator DP is a q × r matrix differential operator with entries

(DP )µν =
∑
J

∂Pµ
∂uνJ

DJ ,

where µ = 1, . . . , r and ν = 1, . . . , q.

Now, any n-th order (smooth) system of differential equations can be viewed as a zero set

of differential functions:

F̃µ(x, u(n)) = 0, µ = 1, . . . , l, (1)

where x = (x1, . . . , xp), u = (u1, . . . , uq), and u(n) denotes the derivatives of uαs with respect

to xjs up to the order n. A solution of this system of differential equations is a smooth func-

tion f(x) such that F̃µ(x, pr(n)f) = 0 for all µ = 1, . . . , l whenever x lies in the domain of f .

A generalized vector field v is defined by the formula

v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
α=1

φα[u]
∂

∂uα
,

where ξi[u], φα[u] are differential functions for all i = 1, . . . , p and α = 1, . . . , q. The prolon-

gation of v is a formal sum

pr v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
α=1

∑
J

φJα[u]
∂

∂uαJ
,

where the sum is taken over all multi-indices J , and

φJα = DJ

(
φα −

p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ,i.

Note that for any generalized vector field v its prolongation pr v : A→ A is a derivation of

the algebra A of differential functions. Again, no convergence issues arise because for any

differential function a ∈ A the sum pr v(a) is finite.

Definition 2 (see [29]). A generalized vector field v is generalized symmetry of the system

(1) if

pr v(F̃µ) = 0 for all µ = 1, . . . , l

on the solutions of (1).

Note that if all ξi and φα are functions of x and u only, v is the infinitesimal generator of

the classical (Lie point) symmetry.

Let v be a generalized symmetry of (1). Define its evolutionary representative, i.e., a

generalized vector field vQ of the form vQ =
∑q

α=1 Qα[u] ∂
∂uα

, where Qα = φα −
∑p

i=1 ξ
iuαi .

It is easy to prove (see [29]) that v is a generalized symmetry for (1) if and only if so is vQ.

Moreover, both v and vQ are equivalent in the sense that they differ by a trivial symmetry,

i.e., by a generalized symmetry whose coefficients vanish on solutions of (1). Therefore when

we are looking for symmetries of a given system we can without loss of generality restrict
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ourselves to the symmetries in evolutionary form. The main advantage of the evolutionary

form of a generalized vector field is a simple form of its prolongation:

pr (vQ) = pr

(
q∑

α=1

Qα[u]
∂

∂uα

)
=
∑
α,J

DJ(Qα)
∂

∂uαJ
.

The q-tuple of differential functions Q = (Q1, . . . , Qq) is called the characteristic of the

generalized symmetry vQ. From now on by a symmetry we mean a generalized symmetry

in the evolutionary form.

If we consider a system of evolution equations

ut = F (x, ũ(n)), (2)

where u = (u1, . . . , uq), x = (x1, . . . , xp), F = (F1, . . . , Fq) is a q-tuple of differential func-

tions, and ũ(n) denotes the set of all derivatives of u up to order n not involving the differ-

entiation w.r.t. the time t, then the symmetry condition (2) on vQ can be rewritten in the

form

Dt(Qν) = pr vQ(Fν) for all ν = 1 . . . , q,

where we now assume without loss of generality that Q = Q(x, t, ũ(k)) is free of the the

derivatives of u involving the differentiation w.r.t. t.

The Fréchet derivative of a differential operator D =
∑

K PK [u]DK with respect to an

evolutionary vector field vQ is the differential operator pr vQ(D) =
∑

K pr vQ(PK)DK .

A conservation law for the system (1) is the divergence expression

Div(R) = 0, (3)

which vanishes on all smooth solutions of (1), where R = (R1, . . . , Rp) is a p-tuple of dif-

ferential functions. For an evolutionary system (2), one of the independent variables, the

variable labeled t which usually stands for the time (i.e., the evolution parameter), is natu-

rally distinguished from the other independent variables. In this case the conservation law

(3) can be written in the form

Dt(ρ) = D̃iv(σ),

where the total divergence D̃iv on the right-hand side does not contain the total time deriv-

ative.

The differential function ρ = ρ(x, t, ũ(k)) is called the density of a conservation law, and the

p-component differential vector function σ = σ(x, t, ũ(s)) is called the flux. It can be shown

(see e.g. [29]) that for any Ω ⊂ X the functional T[t, u] =
∫
Ω

ρ dx is a constant (depending

on the solution!) for any given solution u = f(x) of (2) such that σ → 0 as x→ ∂Ω.

It can be proved that the q-tuple E(ρ), where E is the Euler-Lagrange operator, satisfies

the equation

Dt(E(ρ)) + D∗F (E(ρ)) = 0,
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which means that E(ρ) is a cosymmetry for (2).

A formal symmetry of order m for the n-th order evolution system (2) in one independent

variable x is a formal series

S =
k∑

j=−∞

ljD
j
x,

where the coefficients lj are q × q matrices with differential functions (again free of the

derivatives of u involving the differentiation w.r.t. t) as entries, such that

deg (Dt(S)− [DP ,S]) ≤ n+ k −m.

Here the symbol deg stands for the degree of a formal series; recall that for M =
∑s

j=−∞ bjD
j
x

with bs 6= 0 we have deg M = s by definition, see e.g. [21, 22].

The procedure of finding formal symmetries whose coefficients do not explicitly depend on

the time t for a given evolution system (2) is described in [21, 22, 23] both for the scalar case

(q = 1) and the vector case (q > 1). Unfortunately, for the vector equations it is efficient only

under certain technical assumptions on (2), see e.g. [21, 22] for details. On the other hand,

the theory of time-independent formal symmetries for scalar evolution equations is essentially

complete. The existence of formal symmetries is studied mainly using the so-called canonical

densities.

Throughout the rest of this section we will consider only scalar equations (q = 1) in one

independent variable x, i.e., equations of the form

ut = F (x, u, u1, . . . , un), (4)

where F = F [u] is a differential function, and uj = ∂ju/∂xj.

Theorem 1 ([22, 23]). Let S be a time-independent formal symmetry of order N > n and

of the degree k for the equation (4). Then (4) possesses N − n conserved densities

ρi =

{
res(Si/k) i 6= 0

res log(S) i = 0,
(5)

where i = −1, 0, . . . , N − n− 2.

Recall that the residue and logarithmic residue of the formal series M =
∑k

j=−∞ ljD
j
x are

the coefficients res M := l−1 and log res M := lk−1/lk, respectively.

It can be proved (see e.g. [21]) that a first few canonical densities (5) can be expressed

also in terms of the coefficients of the operator DF .
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For instance, the first canonical densities for an n-th order evolution equation (4) with

n > 2 are, up to a suitable choice of normalization, given by the formulas (see [21, 22, 23])

ρ−1 =

(
∂F

∂un

)−1/n

, (6)

ρ0 =
∂F/∂un−1

∂F/∂un
. (7)

This yields a criterion for existence of a formal symmetry of any fixed order and, as the

following theorem implies, also provides a criterion for the existence of a time-independent

generalized symmetry with the characteristic of the fixed order:

Theorem 2 (see [22, 23]). Equation (4) possesses an explicitly time-independent formal sym-

metry of order N > n if and only if the first N−n canonical densities ρi, i = −1, 0, 1, 2, . . . , N−
n− 2 are densities of local conservation laws.

Existence of an explicitly time-independent formal symmetry of order q > N is a neces-

sary condition for (2) to possess explicitly time-independent generalized symmetries with the

characteristic of order q.

Time-dependent generalized symmetries and time-dependent formal symmetries are treated

inter alia in [41]. There the general form of a few leading terms for any time-dependent for-

mal symmetry of order r > n is given:

Theorem 3 (see [41]). Any formal symmetry R of (4) of degree k and of order r > n can

be written in the form

R = R̃ +
k∑

j=k−n+1

dj(t)D
j/n
F +

k

n2
dk(t)D

−1
x (Φ−1−1/nDt(Φ))D

(k−n+1)/n
F

+
1

n
ḋk(t)D

−1
x (Φ−1/n)D

(k−n+1)/n
F ,

(8)

where Φ = ∂F/∂un, di(t) are functions of t, and R̃ is a formal series such that deg R̃ <

k − n+ 1.

The rigorous definition of fractional powers of formal series used in (8) can be found in

[22, 23].

In general, we see that there is an important relation among time-independent generalized

symmetries and time-independent formal symmetries and canonical densities. This fact

and the results from [41] are employed in section 6 below and in [44] in finding all time-

independent generalized symmetries.
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3. Hamiltonian operators and the associated Hamiltonian evolution

equations

In this section we consider matrix differential operators in total derivatives D : Aq → Aq,

their entries being differential operators of the form

Dkl =
∑
J

Pkl,J [u]DJ ,

where Pkl,J [u] are arbitrary differential functions. We also give several equivalent conditions

for the differential operators to be Hamiltonian.

Introduce the following equivalence relation on A: Two differential functions P1 and P2 are

equivalent if they differ by a total divergence of a differential vector function Q: P1 − P2 =

DivQ. The quotient space A/Div is denoted by F and its members are called functionals.

The equivalence class of a differential function P is denoted by
∫
Pdx.

The bracket associated with a differential operator D is a R-bilinear map {·, ·} : F×F → F

defined by the formula

{P,L} :=

∫
δP ·D(δL)dx, (9)

where P =
∫
Pdx and L =

∫
Ldx. The operator δ in (9) is the variational derivative

δ : F → Aq, δ : P =
∫
Pdx 7→ E(P ).

Definition 3. (see [29]) A linear differential operator in total derivatives D : Aq → Aq is

said to be Hamiltonian if the associated bracket {·, ·} : F×F → F is Poisson, i.e., it satisfies

the following conditions:

(1) {R,L} = −{L,R} (skew symmetry)

(2) {{P,L} ,R}+ {{R,P} ,L}+ {{L,R} ,P} = 0 (the Jacobi identity).

The definition of Hamiltonian operators by means of Poisson brackets is conceptually

transparent but it is rather difficult to use in concrete computations. Conditions equivalent

to the skew-symmetry condition and the Jacobi identity condition of Poisson brackets were

studied by Olver [29], Dorfman [10], and others. Several of them are listed below.

Theorem 4 (see [29]). Let D : Aq → Aq be a matrix differential operator. Then the

associated bracket {·, ·} : F × F → F is skew-symmetric if and only if the operator D is

skew-adjoint, i.e., D∗ = −D.

Theorem 5 (see [29]). Let D : Aq → Aq be a skew-adjoint matrix differential operator.

Then the associated bracket {·, ·} : F × F → F satisfies the Jacobi identity condition if and

only if the condition∫
[P · (pr vD(Q)(D))(R) +Q · (pr vD(R)(D))(P ) +R · (pr vD(P )(D))(Q)]dx = 0

holds for all q-tuples of differential functions P,Q,R ∈ Aq.
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For example, any skew-adjoint matrix differential operator whose entries have constant

coefficients or quasi-constant coefficients is always a Hamiltonian one. This readily follows

from the above theorem.

The condition in the following theorem was obtained by Dorfman in [10] only for translation-

invariant Hamiltonian operators in one independent variable. It can be shown that it remains

valid for a broader class of operators:

Theorem 6 (cf. [10]). The skew-adjoint matrix differential operator D : Aq → Aq is Hamil-

tonian if and only if the following condition holds for arbitrary Q,R ∈ Aq:

(DDQ)DR− (DDR)DQ = D(DDR)∗Q, (10)

where for any Q ∈ Aq the operator DDQ : Aq → Aq is defined by the formula

(DDQ)R := pr vR(D)(Q).

We now define Hamiltonian evolution equations related to a given Hamiltonian operator

D. For a given functional H =
∫
Hdx they are precisely the equations of the Hamiltonian

flow associated to the Hamiltonian evolution vector field with the characteristic D(δH):

Definition 4. Let ut = Q[u] be an evolution system. We say that this system is Hamiltonian

with respect to a matrix Hamiltonian differential operator D with a Hamiltonian functional

H if the right-hand side Q of our system can be written as

Q[u] = D(δH).

Example 1. (see e.g. [29]) The Korteweg–de Vries equation

ut = uxxx + uux

can be written in Hamiltonian form in two ways, the first being

ut = Dx

(
uxx +

1

2
u2

)
= D1(δH1),

where D1 = Dx is a constant-coefficient operator, and hence a Hamiltonian one, and H1 =∫
(−1

2
u2
x + 1

6
u3)dx, and the second being

ut =

(
D3
x +

2

3
uDx +

1

3
ux

)
u = D0(δH0),

where D0 = D3
x + 2

3
uDx + 1

3
ux is a Hamiltonian operator (now this is not that aparent) and

H0 =
∫

1
2
u2dx.

Recall that a functional P =
∫
Pdx is a conserved quantity (or an integral of motion) for

an evolution system (2) if P is a conservation law density for (2).

The Hamiltonian systems enjoy the following important additional property:
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Theorem 7 (see e.g. [29]). If P =
∫
Pdx and P =

∫
Qdx are conserved quantities for a

Hamiltonian system ut = D(δH) then their Poisson bracket {P,Q} is again a conserved

quantity for the system under study.

This means that, at least in principle, we can obtain new conserved quantities by taking the

Poisson brackets of the known ones.

Definition 5. We say that linearly independent Hamiltonian differential operators D1 and

D2 form a Hamiltonian pair (or that they are compatible) if every R-linear combination

aD1 + bD2 is also a Hamiltonian operator. An evolution equation which can be written in

Hamiltonian form in two ways so that the Hamiltonian operators in question are compatible

is said to be bi-Hamiltonian.

It is important to stress that under certain fairly minor technical assumptions bi-Hamiltonian

systems are completely integrable in the sense that they have infinitely many conserved quan-

tities that Poisson commute with respect to both Poisson brackets associated with D1 and

D2, see e.g. [4], [10], [8] and [29] for further details.

Example 2. It can be proved that the Hamiltonian operators D1 and D0 from Example 1

form a Hamiltonian pair. Hence, the Korteweg–de Vries equation is a bi-Hamiltonian equa-

tion.

We now take a somewhat closer look at the symmetries and conservation laws of Hamilton-

ian evolution systems. Let D be a Hamiltonian operator and let us consider the associated

Hamiltonian system

ut = D(δP), (11)

where P is a functional. Recall that a functional C is called a Casimir functional, if D(δC) =

0. In terms of the Poisson bracket, a functional C is a Casimir functional if and only if

{C,H} = 0 for all H ∈ F. Recall that a Hamiltonian vector field associated to a given

Hamiltonian operator D and a functional H is the unique vector field v̂H which satisfies

v̂H(P) = {P,H} for all functionals P ∈ F.

It can be verified that such a Hamiltonian vector field has the characteristic equal to DδH.

Note that a Hamiltonian operator D yields a Lie algebra homomorphism D ◦ δ from the

Lie algebra of functionals endowed with the Poisson bracket associated with D to the Lie

algebra of evolutionary vector fields, see e.g. [4] or [29] for details.

There is a nice Noether-type correspondence between symmetries and conservation laws

for Hamiltonian systems:

Theorem 8 (see e.g. [29]). Let ut = DδH be a Hamiltonian system of evolution equations.

A Hamiltonian vector field v̂P with the characteristic DδP determines a generalized symme-

try of the system under study if and only if there is an equivalent functional P̃ = P − C,

10



differing from P by a time-dependent Casimir functional C[t, u] such that P̃ is a conserved

quantity and thus defines a conservation law.

4. The classification results concerning Hamiltonian operators in one

independent variable x and one dependent variable u

In this section we give a brief survey of the results concerning the classification of Hamil-

tonian operators in one independent variable x and one dependent variable u obtained re-

spectively by Olver [31], Cooke [6] and, more recently, by de Sole, Kac and Wakimoto [7].

Because of the nonlinear Jacobi identity condition the classification of Hamiltonian opera-

tors is quite difficult. It should be mentioned that to date the classification of Hamiltonian

operators of this type is available only up to the order 11 (recall that since a Hamiltonian

operator must be skew-adjoint its order is always an odd number), where in the case of the

operators of the 1st, 3rd and 5th order the general formulas for them are known whereas the

operators of the 7th, 9th and 11th order are described only modulo contact transformations.

We also provide a discussion of the so-called Darboux coordinates for Hamiltonian operators

in one dependent and one independent variable. In the last part of this section we survey

some known results on Hamiltonian operators that possess momentum.

Theorem 9 ([25]). Let D1 be a Hamiltonian operator in the variables x, u. Under the

differential substitution

x = ϕ(y, v, v1, . . . , vm), u = ψ(y, v, v1, . . . , vn), (12)

where vj = Dj
y(v), and Dy is the total derivative with respect to y, the operator D1 goes into

the Hamiltonian operator D2 defined by the formula

D1 = (Dy(ϕ))−1K∗ ◦D2 ◦ K, (13)

where

K =

max(m,n)∑
i=0

(−1)iDi
y ◦
(
∂ψ

∂vi
Dy(ϕ)− ∂ϕ

∂vi
Dy(ψ)

)
,

K∗ is the formal adjoint of K, and D1 is obtained from D1 upon using (12) and setting

Dx = (Dy(ϕ))−1Dy.

Note that in general a differential substitution may be non-invertible. However, there is

a subclass of the class of differential substitutions which has a group structure, namely, the

pseudogroup of contact transformations.

Definition 6. A contact transformation is a transformation of the form

x = ϕ(y, v, vy), u = ψ(y, v, vy), Dx =
1

Dyϕ
Dy,

11



which satisfies the following conditions:

∂ϕ

∂vy
Dyψ =

∂ψ

∂vy
Dyϕ, and Dyϕ and ρ =

∂ψ

∂v
− ∂ϕ

∂v

Dyψ

Dyϕ
are nonzero differential functions.

A special contact transformation is a contact transformation of the form (see e.g. [25])

x = ϕ(y, v, vy) = y + w(v, vy) and u = ψ(v, vy).

As it was said above, the set of all contact transformations is a pseudogroup with respect

to the composition. The set of all special contact transformations also forms a pseudogroup.

Theorem 10 (see [25])). A differential substitution preserves the order of a scalar local

Hamiltonian operator if and only if it is contact.

Note that in general the operator D2 may contain nonlocal terms unless (12) is a contact

transformation, cf. e.g. [3, 7, 25].

Before we treat general forms of Hamiltonian operators recall the notion of the so-called

level lev D of a Hamiltonian operator D =
∑k

i=0 Pi[u]Di
x which is defined as maxi{i+ord Pi}.

It is proved (see [7]) that, with the exception of m = 1 in the case N = 3, the only possible

values m of the level of a non-quasiconstant-coefficient Hamiltonian operator of order N ≤ 11

are m = N,N+1, N+2 (we say that D =
∑k

i=0 Pi[u]Di
x is a quasiconstant-coefficient operator

if its coefficients depend only on x).

The general form of the first-order Hamiltonian operators was originally found by Dorfman

and Gel’fand in [17] but there it was done only for Hamiltonian operators that did not

explicitly depend on the space variable x. Their result was extended by Olver in [31]. The

general forms of the third- and fifth- order Hamiltonian operators were found by D. B.

Cooke in [6]. We present here only those results that are relevant for us, i.e., mainly the

results concerning the leading coefficients and the general form of a fifth-order Hamiltonian

operator with the leading coefficient equal to 1, which (in the case of fifth-order Hamiltonian

operators) will be important for us in section 7 below and also in [45]. The conditions on

the coefficients of a fifth-order operator in order for the latter to be Hamiltonian are listed

in that section for a certain special case.

Theorem 11. The following assertions hold:

(1) (see [31]) Any first-order Hamiltonian operator D must be of the form

D =
1

E(a)
◦Dx ◦

1

E(a)
,

where a = a(x, u, ux).

(2) (see [6]) Any third-order Hamiltonian operator D must be of the form

D =
1

f
◦
(
Dx ◦

1

f

)3

+ lower-order terms,

where f = αuxx + β, α = α(x, u, ux) and β = β(x, u, ux).

12



(3) (see [6]) Any fifth-order Hamiltonian operator D must be of the form

H =
1

f
◦
[
Dx ◦

1

f

]5

+ lower-order terms,

where f = αuxx + β and α = α(x, u, ux) and β = β(x, u, ux).

Theorem 12 (see [6]). A fifth-order Hamiltonian operator whose leading coefficient is 1

must be of the form

D = D5
x + bD3

x +D3
x ◦ b+ cDx +Dx ◦ c,

where b and c are functions of x alone. Otherwise they are given by

b =
3

2
(u+ α)−1(uxx + α′′)− 7

4
(u+ α)−2(ux + α′)2 + β(u+ α) + γ,

c = −z4

z
+
βz2

1

2z
+
wz2

2z
− wz2

1

4z2
− w1z1

z
+

9z1z3

2z2
− 129z2

1z2

8z3
+

273z4
1

32z4

+
33z2

2

8z2
− βz2

2
− 3zβ′′

2
− β′z1

2
− β2z2

2
+
w2

2
,

where α, β, and γ are functions of x only, w and z are given by

w = βz + γ, z = u+ α,

and wi = Di
x(w), zi = Di

x(z).

If β = 0, then any choice of α and γ yields a Hamiltonian operator.

If β 6= 0, then

γ = − ρ

β2
− β′′

2β
+

(β′)2

4β2
,

where ρ is an arbitrary constant.

As we have already mentioned at the beginning of this section, the classification of scalar

Hamiltonian operators of the 7th, 9th and 11th order was obtained using the Poisson vertex

algebras by de Sole, Kac, and Wakimoto in [7] modulo contact transformations, i.e., the

authors defined the following equivalence on the set of all scalar Hamiltonian operators of a

given order: two Hamiltonian operators D1 and D2 are equivalent, if there exists a contact

transformation which turns D1 into D2. Namely, de Sole, Kac and Wakimoto [7] have found a

complete list of canonical forms for 7th-, 9th- and 11th-order Hamiltonian operators modulo

contact transformations and gave a conjectural list of such normal forms for all odd orders.

Moreover, in [7], a new family of compatible Hamiltonian operators

H(N,0) = D2
x ◦
(

1

u
Dx

)2n

◦Dx, N = 2n+ 3, n = 0, 1, 2, . . .

was introduced and the following conjecture was made:

13



Conjecture 1 (see [7]). For any translation-invariant Hamiltonian operator H of order N ≥
7 there exists a contact transformation that turns H into either a quasiconstant coefficient

skew-adjoint differential operator or into a linear combination of the operators H(j,0) with

3 ≤ j ≤ N , j odd.

This conjecture could be a starting point in the solution of one of the most important

problems in the theory of infinite-dimensional Hamiltonian systems, the problem of find-

ing the Darboux coordinates; for more details see section 5 below and [46]. It is basically

the question of whether, given a Hamiltonian operator D, there exist canonical coordinates

such that D takes some simple form, usually the form of the Gardner operator Dx. This

is analogous to the case of finite-dimensional Hamiltonian systems where such coordinates

do exist by the celebrated Darboux theorem. The existence of these coordinates (we still

call them the Darboux coordinates to stress the analogy with the finite-dimensional case) for

the first-order Hamiltonian operators in one independent and one dependent variable was

established by Olver; the same results for the third- and fifth- order Hamiltonian operators

in one independent and one dependent variable were obtained by Cooke [6]. For higher-order

Hamiltonian operators the problem is still open.

A quite important property of Hamiltonian operators in one independent and one depen-

dent variable is the existence of momentum.

Definition 7. Let D be a Hamiltonian operator in one independent variable x and one

dependent variable u. We say that D has momentum if there exists a functional P such that

D(δP) = ux.

Note that this definition readily extends to the case of several dependent variables.

The existence of momentum for a given operator D can be employed [25] e.g. for averaging

the corresponding Hamiltonian system ut = D(δH) or for finding the traveling wave solutions

of the form u(x − at) for the Hamiltonian system ut = D(δH) in the following way: let D

be a Hamiltonian operator that possesses momentum, i.e., there exists a functional P such

that D(δP) = ux. Let u = u(x− at) be a solution of the Hamiltonian equation ut = D(δH).

The function u(x− at) satisfies

ut + aux = 0.

Therefore, it also satisfies the equation

D(δH + δaP) = Dδ(H + aP) = 0. (14)

The above equation (14) is equivalent to a lower-order one:

δ(H + aP) = δC, (15)

14



where C is the (most general) Casimir functional for D. It can be shown that for D =∑k
i=0 pi[u]Di

x we have δC = Q(x, u). With this in mind equation (15) is usually much easier

to solve than (14).

Operators having momentum could be also employed for the construction of hierarchies

of local symmetries (or higher commuting flows) in the following fashion.

Suppose we are given a Hamiltonian operator in one dependent variable u and one

independent variable x, say D, possessing momentum, which means that there exists a

functional P =
∫
hdx such that ux = D(δP). Further assume that there exists another

translation-invariant Hamiltonian operator E which is compatible with D and that the oper-

ator R := E ◦D−1 is a weakly nonlocal hereditary operator. Then R is a recursion operator

for the equation ut0 = ux and, under a further minor technical assumption of normality

of R in the sense of [39], by Theorem 1 from [39] the quantities Ri(ux) are local and the

associated flows commute for all i = 1, 2, 3, . . . , and we thus have an infinite hierarchy of

local commuting flows utj = Rj(ux), j = 0, 1, 2, . . . .

The classification of Hamiltonian operators having momentum was initiated by Mokhov

[25]. The first result in this direction is the following proposition:

Proposition 1 (see [25]). Let D be a Hamiltonian operator that possesses momentum. Then

D is translation-invariant.

Mokhov [25] has also established that the existence of momentum is preserved by the

special contact transformations, so one can perform the classification modulo the latter. He

succeeded in classifying all first- and third-order Hamiltonian operators having momentum:

Theorem 13. (see [25])

(1) A first-order Hamiltonian operator has momentum if and only if it is translation-

invariant.

(2) An arbitrary translation-invariant Hamiltonian operator of the third order can be

reduced by a special contact transformation to one of the operators (16)-(18).

(a) An operator

D = ± 1

ux

[
D3
x + 2SDx +DxS

]
◦ 1

ux
+ 2fDx +Dxf, (16)

where S = u3

u1
− 3

2
(u2)2

(u1)2
and f is an arbitrary function of u only, has momentum.

The corresponding functional is of the form
∫
p(u)dx, where p(u) is the solution

of the equation

±∂
4p

∂u4
+ 2f(u)

∂2p

∂u2
+
∂p

∂u

∂f

∂u
− 1 = 0.

(b) An operator

D = ±
[
D3
x + 2AuDx + Aux

]
, A = const > 0 (17)
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has momentum.

(c) An operator

D = ±
[
D3
x + ADx

]
, A = const. (18)

does not have momentum.

Our results on the classification of fifth-order Hamiltonian operators having momentum

are treated in section 7 below and further details can be found in [45].

5. The Darboux coordinates for a new family of Hamiltonian operators

and linearization of associated evolution equations.

In the paper [46] we consider a recently introduced family of compatible Hamiltonian op-

erators from [7] of the form H(N,0) = D2◦((1/u)◦D)2n◦D, where N = 2n+3, n = 0, 1, 2, . . . .

For each of these operators we found a differential substitution which turns this operator

into a simpler form. In Theorem 14 we present a transformation which simultaneously turns

the operators H(N,0) for all N ≥ 3 into operators with constant coefficients:

Theorem 14 (see [46]). The transformation x = v, u = 1/vy turns the N-th order Hamil-

tonian operator H(N,0) = D2
x ◦ ((1/u) ◦Dx)

2n ◦Dx, where N = 2n + 3, n = 0, 1, 2, . . . , into

the Hamiltonian operator with constant coefficients H̃(N,0) = −D2n+1
y .

Note that the transformation x = v, u = 1/vy can be realized as a composition of the

potentiation x = z, u = wz and the hodograph transformation z = v, w = y, the latter

transformation being contact (and actually even a point one).

We can further strengthen the result of Theorem 14 and find for each operator H(N,0) with

N ≥ 3 the corresponding Darboux coordinates:

Corollary 1 (see [46]). The transformation x = (−1)
n+1

2 wn, u = (−1)
n+1

2 /wn+1 where

wk = Dk
z (w), and z is the new independent variable maps the Hamiltonian operator H(N,0) =

D2
x ◦ ((1/u) ◦Dx)

2n ◦Dx into the first-order Gardner operator Dz for any odd N > 3.

Bringing a Hamiltonian operator into the Gardner form enables us to render the associ-

ated Hamiltonian systems into the canonical Hamiltonian form and construct Lagrangian

representations (modulo potentialization) for these systems [32].

These results can be employed for linearization of potential forms of bi-Hamiltonian equa-

tions

ut = D1δuT1 = D2δuT2, (19)

where Di =
∑ki

j=1 cijH
(Nij ,0), i = 1, 2, ki are arbitrary natural numbers and cij are arbitrary

constants:
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Proposition 2 (see [46]). The transformation z = v, w = y, where y is the new independent

variable, linearizes the potential form of the bi-Hamiltonian evolution equation (19). The

potential form of (19) reads

wt = Ď1δwŤ1 = Ď2δwŤ2, (20)

where Ďi =
∑ki

j=1 cijȞ
(Nij ,0), i = 1, 2, Ȟ(N,0) = −Dz ◦

(
1
wz
Dz

)2n

, and Ťi are obtained from

Ti using the substitution x = z, u = wz.

Example 3. Consider a bi-Hamiltonian evolution equation

ut = D3
x

(
u−2
)

= H(3,0)δuT1 = H(5,0)δuT2, (21)

where T1 = −
∫

dx/u and T2 =
∫
x2udx.

The potential form (20) of (21) reads

wt = D2
z

(
w−2
z

)
= Ȟ(3,0)δwŤ1 = Ȟ(5,0)δwŤ2. (22)

Recall that u = wz and x = z; we have Ȟ(3,0) = −Dz, Ȟ
(5,0) = −Dz ◦ ((1/wz)Dz)

2,

Ť1 = −
∫

dz/wz, and Ť2 =
∫
z2wzdz. Note that (22) has, up to a rescaling of t, the form

(2.31) from [5].

In perfect agreement with Proposition 2 (cf. also Proposition 2.2 in [5]) the hodograph

transformation z = v, w = y linearizes (22) into a (trivially) bi-Hamiltonian equation

vt = −2vyyy = H̃(3,0)δvT̃1 = H̃(5,0)δvT̃2, (23)

where H̃(3,0) = −Dy, H̃
(5,0) = −D3

y, T̃1 = −
∫
v2
ydy, and T̃2 =

∫
v2dy.

The following corollary now easily follows from the previous results:

Corollary 2 (see [46]). The differential substitution x = v, u = 1/vy relates any equation

of the form (19) to a linear evolution equation with constant coefficients.

The results concerning the transformation properties of the operators H(N,0) can be used

as a first step in the proof of the existence of Darboux coordinates for any Hamiltonian

operator. The proof uses, among other results, the following lemma:

Lemma 1. Given a quasiconstant skew-adjoint differential operator D =
∑N

i=0 ai(x)Di
x there

exists a transformation of the form x = y, u =
∑k

i=0 bi(x)vi that turns D into the Gardner

operator Dy.

Now, using the statement of Theorem 14 and the fact that the transformation from this

theorem is a composition of the potentiation and a contact transformation, Conjecture 1 can

be restated as follows:
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Conjecture 2 (see [46]). Any translation-invariant Hamiltonian operator of order N ≥ 7

can be transformed into the Gardner operator D by either a contact transformation or a

composition thereof with the transformation x = v, u = 1/vy and a transformation of the

form x = y, u =
∑k

i=0 ai(x)vi.

6. A complete list of conservation laws for non-integrable compacton

equations of K(m,m) type

In the paper [44] we consider a family of the so-called generalized K(m,n) equations,

ut = aD3
x(u

n) + bDx(u
m), a, b,∈ R, (24)

that are of great interest both for mathematicians and physicists since they describe many

natural wave phenomena with finite span. This family of differential equations in a slightly

less general form first appeared in [37] in 1993 as a family of differential equations whose

solutions are compactons, i.e., solitons with compact support. Below and in [44] we restrict

ourselves only to the case m = n.

If m = n then the K(m,n) equations are easily seen to be Hamiltonian with respect to the

Hamiltonian operator D = aD3
x + bDx, the Hamiltonian functional being H =

∫ ∫
umdudx.

Thus, equation (24) for m = n can be written as

ut = aD3
x(u

m) + bDx(u
m) = DδH. (25)

Our goal in [44] is to find all local conservation laws for all non-integrable cases of K(m,m)

equations, and, in particular, to give a rigorous proof of the result of Olver (see [37]) who

found four conservation laws for the K(2, 2) equation and claimed without proof that no

other conservation law for this equation exist. This is done using the so-called symmetry

approach to integrability, see the discussion in section 2 and e.g. [21, 22, 23] for details. The

relevant results employed by us below were given in Theorems 2 and 3.

Computing the canonical density ρ−1 from (6) for a generalized K(m,m) equation we

see that it is a conserved density only for the cases m = −2,−1/2, 0, 1. For all m ∈ R \
{−2,−1/2, 0, 1} the first canonical density is not a conserved density. The cases m = −2 and

m = −1/2 were identified by Rosenau as integrable cases ofK(m,m) equations and form = 0

and m = 1 the K(m,m) equation is just linear. Therefore we can stop computing canonical

densities at this stage and notice that the K(m,m) equations for m ∈ R \ {−2,−1/2, 0, 1}
have no generalized time-independent symmetries of order greater than 3, and hence, in

particular, these equations are not symmetry integrable.

Proposition 3 (see [44]). If m 6= −2,−1/2, 0, 1, then the corresponding generalized K(m,m)

equation (25) has no explicitly time-independent generalized symmetries of order greater than

3; in particular, equation (25) is not symmetry integrable.
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Proposition 3 ensures non-existence of explicitly time-independent generalized symmetries

of order greater than 3. However, this result can be further strengthened using Theorem 1

from [41] to cover also explicitly time-dependent symmetries:

Proposition 4 (see [44]). If m 6= −2,−1/2, 0, 1, then the corresponding generalized K(m,m)

equation (25) has no generalized symmetries of order greater than 3, including explicitly time-

dependent ones.

Proof. For the equations under study we obviously have Dt(ρ−1) 6∈ ImDx and ρ−1 6∈ ImDx,

where ρ−1 = (anun−1)−1/3 . This fact in conjunction with Theorem 3 implies that for

any (even possibly explicitly time-dependent) formal symmetry R of order r > 3 we have

dk(t) = 0 (see (8)), as the coefficients of a formal symmetry must be differential functions,

and hence the coefficients at the nonlocal terms D−1
x (Φ−4/3Dt(Φ)) and D−1

x (Φ−1/3) must

vanish (in our case Φ = anun−1, see the definition in Theorem 3). But the equality dk(t) = 0

means that the leading term of our formal symmetry R must vanish, i.e., we arrive at a

contradiction. This means that the equations under study have no formal symmetries, time-

dependent or not, of order greater than three, and therefore (cf. e.g. the discussion at the

end of section 2 in [41]) they also have no generalized symmetries (be they time-dependent

or not) with the charcteristics of order greater than three. �

Now finding all generalized symmetries becomes just a straightforward computation:

Proposition 5 (see [44]). The only generalized symmetries of (25) for m 6= −2,−1/2, 0, 1

are those with the characteristics Q1 = ux, Q2 = ut and Q3 = (m − 1)tut + u, i.e., x- and

t-translations and the scaling symmetry.

Now we can find all local conservation laws for all non-integrable cases of generalized

K(m,m) equations. If ρ is a density of a conservation law of an evolution equation, then

the function γ = E(ρ) is a cosymmetry of the equation in question. Now we use the

Hamiltonian structure of any K(m,m) equation and the fact that Hamiltonian operator

D turns cosymmetries of the equation ut = DδH into symmetries, whence we infer that

D(E(ρ)) is a symmetry and, since we know that ord(D(E(ρ))) ≤ 3, we have ord E(ρ) = 0.

Thus, we arrive at the following result:

Theorem 15 (see [44]). If ρ is a density of a local conservation law for a generalized K(m,m)

equation, where m 6= −2,−1/2, 0, 1, then it is, up to the addition of a trivial density, a func-

tion of x, t and u only.

After straightforward computations we obtain

Theorem 16 (see [44]). The only local conservation laws of the form Dt(ρ) = Dx(σ) for

the generalized K(m,m) equation (25) with m 6= −2,−1/2, 0, 1, are, modulo the addition of
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trivial conservation laws, just the linear combinations of the four conservation laws which

for b 6= 0 are given by the formulas

ρ1 =

∫
umdu σ1 =

(
mauxxu

2m−1 +
am(m− 2)

2
u2
xu

2m−2 +
b

2
u2m

)
ρ2 = u σ2 = aD2

x(u
m) + bum

ρ3 = u sin

(√
b√
a
x

)
σ3 = aD2

x(u
m) sin

(√
b√
a
x

)
−
√
abDx(u

m) cos

(√
b√
a
x

)

ρ4 = u cos

(√
b√
a
x

)
σ4 = aD2

x(u
m) cos

(√
b√
a
x

)
+
√
abDx(u

m) sin

(√
b√
a
x

)
.

If b = 0, then the conservation law with the density ρ3 is trivial, and the densities ρ2 and ρ4

coalesce. However, there are two other conservation laws in such a case, namely

ρ5 = xu σ5 = aD2
x(xu

m)− 3aDx(u
m)

ρ6 = x2u σ6 = aD2
x(x

2um) + 6aum − aDx(xu
m),

i.e., for b = 0 equation (25) with m 6= −2,−1/2, 0, 1 also has, up to the addition of trivial

conservation laws, just four conservation laws with the densities ρ1, ρ2, ρ5, ρ6 and the fluxes

σ1, σ2, σ5, σ6.

If a and b have different signs then sines and cosines of a complex variable appear in the

formulas for ρ3, ρ4, σ3 and σ4. In this case it is convenient to divide ρ3 by the imaginary unit

i and use the following real densities and fluxes instead of the above ρ3, ρ4, σ3 and σ4:

ρ̃3 = cu sinh

(√
|b|√
|a|
x

)
σ̃3 = caD2

x(u
m) sinh

(√
|b|√
|a|
x

)
−
√
|ab|Dx(u

m) cosh

(√
|b|√
|a|
x

)

ρ̃4 = u cosh

(√
|b|√
|a|
x

)
σ̃4 = aD2

x(u
m) cosh

(√
|b|√
|a|
x

)
− c
√
|ab|Dx(u

m) sinh

(√
|b|√
|a|
x

)
,

where c = 1 if a > 0 and b < 0, and c = −1 if a < 0 and b > 0.

The conserved functional corresponding to the first conserved density is the energy, i.e.,

the integral of motion associated with the invariance under the time shifts. If m = 2k − 1

where k ∈ Z \ {0, 1}, then the fact that the quantity
∫
um+1dx is conserved immediately

implies the following property of the solutions of the corresponding K(m,m) equation: if a

solution u(x, t) of (25) belongs to the space L2k(R), i.e.,
∫

R |u|
2kdx <∞, at the time t = t0

then u(x, t) ∈ L2k(R) for all t ≥ t0.

7. Low-order Hamiltonian operators having momentum

The paper [45] addresses the problem of classification of Hamiltonian operators possessing

momentum. Namely, there we employ special contact transformations to classify fifth-order

Hamiltonian differential operators in one dependent and one independent variable possessing
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momentum. As it was mentioned in section 3, this problem for first- and third- order Hamil-

tonian operators was solved by O. Mokhov in [25]. Up to a special contact transformation

he classified all first- and third- order translation invariant Hamiltonian operators having

momentum. His results are listed in Theorem 13.

Let us stress that throughout the rest of this section we tacitly restrict ourselves to Hamil-

tonian differential operators in one dependent and one independent variable.

In [45] we build on the work of Mokhov and, using special contact transformations which

preserve the existence of momentum, describe all fifth-order Hamiltonian operators that

possess momentum. Like Mokhov, we look for such operators among the translation-invariant

ones. At the first step we classify all fifth-order translation-invariant Hamiltonian operators

according to their leading coefficient up to special contact transformations:

Proposition 6 (see [45]). Any fifth-order translation-invariant Hamiltonian operator can be

reduced by a special contact transformation to an operator with the leading coefficient equal

to either ±1 or ± 1
u4
1
.

At the next step we find general forms of fifth-order translation-invariant Hamiltonian

operators with the leading coefficients 1, 1/u4
1 and −1/u4

1. The general form of any fifth-

order Hamiltonian operator with the leading coefficient equal to 1 was obtained earlier by

D. Cooke in [6], see Proposition 12 above.

We should have also been given here a general form of a translation-invariant fifth-order

Hamiltonian operator with the leading coefficient equal to −1 as well. However, there is

a special contact transformation x = y, u = iv which turns any operator with the leading

coefficient −1 into an operator with the leading coefficient 1, and we will prove below that no

fifth-order Hamiltonian operator with the leading coefficient equal to 1 possesses momentum.

Therefore, as special contact transformations preserve the property of existence (or non-

existence) of momentum, it is readily seen that also no fifth-order Hamiltonian operator

with the leading coefficient equal to −1 has momentum. Hence, the case of the leading

coefficient equal to −1 is not interesting for us, and we can leave it aside.

The conditions from [6] on the coefficients of a general fifth-order Hamiltonian operator

D = aD5
x + D5

x ◦ a + bD3
x + D3

x ◦ b + cDx + Dx ◦ c with the leading coefficient equal to 1
u4
1
,

i.e., the case a = 1
2u4

1
are the following

∂c

∂u6

= 0

∂b

∂u4

= 0

∂c

∂u5

= − 3

u5
x

∂b

∂u3

=
5

u5
1
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∂c

∂u4

=
1

3u6
1

(
85u2 − 2

∂b

∂u2

u6
1

)
∂c

∂u3

=
1

3u7
1

(
−16

∂b

∂u2

u6
1u2 − 225u1u3 − 9Dx

(
∂b

∂u2

)
u7

1 + 410u2
2 + 6bu6

1

)
∂b

∂u1

=
1

3u7
1

(
26

∂b

∂u2

u6
1u2 + 340u1u3 + 7Dx

(
∂b

∂u2

)
u7

1 − 550u2
2 − 6bu6

1

)
∂c

∂u2

=
1

6u8
1

(
−3

∂b

∂u
u8

1 + 140
∂b

∂u2

u6
1u

2
2 + 80bu6

1u2 + 11390u1u2u3 − 96
∂b

∂u2

u7
1u3 − 14260u3

2

−27D2
x

(
∂b

∂u2

)
u8

1 + 21Dx(b)u
7
1 − 1200u2

1u4 + 2
∂b

∂u2

bu12
1 − 82Dx

(
∂b

∂u2

)
u7

1u2

)
∂c

∂u1

=
1

6u9
1

(
18
∂b

∂u
u8

1u2 − 42Dx

(
∂b

∂u2

)
u7

1u
2
2 + 416

∂b

∂u2

u6
1u

3
2 − 271Dx(b)u

7
1u2 − 856bu6

1u
2
2

+80bu7
1u3 + 14730u2

1u2u4 − 214Dx

(
∂b

∂u2

)
u8

1u3 − 68
∂b

∂u2

u8
1u4 − 136D2

x

(
∂b

∂u2

)
u8

1u2

+2Dx

(
∂b

∂u2

)
bu13

1 − 4
∂b

∂u2

Dx(b)u
13
1 − 92450u1u

2
2u3 − 1080u3

1u5 − 21D3
x

(
∂b

∂u2

)
u9

1

+3D2
x(b)u

8
1 + 7610u2

1u
2
3 − 3Dx

(
∂b

∂u

)
u9

1 − 404
∂b

∂u2

u7
1u2u3 − 4

∂b

∂u2

bu12
1 u2 + 87920u4

2

)
∂c

∂u
=

1

6u10
1

(
−21D4

x

(
∂b

∂u2

)
u10

1 + 9D2
x

(
∂b

∂u

)
u10

1 + 28410u3
1u3u4 + 15730u3

1u2u5 − 66D2
x(b)u

8
1u2

−608Dx(b)u
7
1u

2
2 − 717Dx(b)u

8
1u3 − 13280bu6

1u
3
2 − 660bu8

1u4 − 205510u2
1u2u

2
3 − 139340u2

1u
2
2u4

+838900u1u
3
2u3 − 80Dx(b)

∂b

∂u2

u13
1 u2 − 1416

∂b

∂u2

u7
1u

2
2u3 − 2062Dx

(
∂b

∂u2

)
u8

1u2u3

−464
∂b

∂u2

bu12
1 u

2
2 − 32

∂b

∂u2

bu13
1 u3 − 120Dx

(
∂b

∂u2

)
bu13

1 u2 − 744
∂b

∂u2

u8
1u2u4 − 673120u5

2

+440cu8
1u2 − 6Dx(b)bu

13
1 − 232b2u12

1 u2 − 1092u4
1u6 − 9D3

x(b)u
9
1 + 6Dx(c)u

9
1

−252D3
x

(
∂b

∂u2

)
u9

1u2 − 956D2
x

(
∂b

∂u2

)
u8

1u
2
2 − 408D2

x

(
∂b

∂u2

)
u9

1u3 + 8c
∂b

∂u2

u14
1 + 6

∂b

∂u
bu14

1

−4b2 ∂b

∂u2

u18
1 − 1304Dx

(
∂b

∂u2

)
u7

1u
3
2 − 282Dx

(
∂b

∂u2

)
u9

1u4 − 2200
∂b

∂u2

u6
1u

4
2 − 68

∂b

∂u2

u9
1u5

+66Dx

(
∂b

∂u

)
u9

1u2 + 192
∂b

∂u
u8

1u
2
2 + 12

∂b

∂u
u9

1u3 − 12D2
x

(
∂b

∂u2

)
bu14

1 − 12Dx

(
∂b

∂u2

)
Dx(b)u

14
1

−708
∂b

∂u2

u8
1u

2
3 + 3124bu7

1u2u3

)
.

Solving this complicated system of differential equations and a very similar system for the

case a = − 1
2u4

1
we arrive at the following lemma.
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Lemma 2 (see [45]). A fifth-order translation-invariant Hamiltonian operator whose leading

coefficient is ±1/u4
1 must be of the form

D = ± 1

2u4
1

D5
x ±D5

x ◦
1

2u4
1

+ bD3
x +D3

x ◦ b+ cDx +Dx ◦ c,

where

b =
1

2u6
1

(
±10u3u1 ∓ 55u2

2 + 2αu4
1

)
,

c =
1

u8
1

(
3u6

1u2
∂α

∂u
+ 2u5

1u3α− 6u4
1u

2
2α + βu8

1 ∓ 3u3
1u5 ± 65u2

1u2u4 ± 50u2
1u

2
3

∓615u1u
2
2u3 ± 735u4

2

)
,

and α and β are functions of u only.

Remark 1. It can be shown that there is no special contact transformation which preserves

the leading coefficient and simultaneously eliminates one of the unknown functions α, β.

Now turn to the property of having momentum. Notice that the Fréchet derivative of

the variational derivative of an arbitrary functional is a self-adjoint differential operator, see

e.g. [29]. The following proposition states that any differential function h whose Fréchet

derivative is a self-adjoint operator and which satisfies the condition D(h) = u1, where D

is a fifth-order Hamiltonian operator with the leading coefficient of differential order less

than or equal to 1, is of the form h = h(x, u). It can be easily verified that any differential

function of this form is the variational derivative of the functional P =
∫ ∫

h(x, u)dudx.

Thus, instead of looking for a functional P such that DδuP = u1 it suffices to check the

existence of a differential function h(x, u) that satisfies the condition D(h) = u1.

Proposition 7 (see [45]). Let D be a fifth-order Hamiltonian operator whose leading coeffi-

cient is of differential order less than or equal to 1,

D = aD5
x +D5

x ◦ a+ bD3
x +D3

x ◦ b+ cDx +Dx ◦ c, ord(a) ≤ 1.

If there is a differential function h[u] such that D(h) = ux and Dh = (Dh)
∗, then h = h(x, u).

As the last step we use the above proposition and obtain the following results:

Proposition 8 (see [45]). No fifth-order Hamiltonian operator with the leading coefficient

±1 has momentum.

Proposition 9 (see [45]). Any fifth-order translation-invariant Hamiltonian operator with

the leading coefficient ±1/u4
1 has momentum, and the corresponding functional P is of the

form P =
∫ ∫

h(u)dudx, where h(u) is a solution of the equation

±∂
5h

∂u5
+2α(u)

∂3h

∂u3
+3

∂α(u)

∂u

∂2h

∂u2
+3

∂2α(u)

∂u2

∂h

∂u
+2β(u)

∂h

∂u
+
∂3α(u)

∂u3
h+

∂β(u)

∂u
h−1 = 0, (26)

where α(u) and β(u) are as in Lemma 2.
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Combining Propositions 8 and 9 with the fact that special contact transformations preserve

existence of momentum, we arrive at our main result.

Theorem 17 (see [45]). (1) A fifth-order Hamiltonian operator which is not translation-

invariant cannot have momentum.

(2) A fifth-order translation-invariant Hamiltonian operator that can be transformed us-

ing a special contact transformation into an operator with the leading coefficient ±1

cannot have momentum.

(3) Any fifth-order translation-invariant Hamiltonian operator that can be transformed

using a special contact transformation into an operator with the leading coefficient

±1/u4
1 has momentum.

Example 4 (see [45]). The operator

D =
1

2u4
1

D5
x +D5

x ◦
1

2u4
1

+ bD3
x +D3

x ◦ b+ cDx +Dx ◦ c,

where

b =
1

2u6
1

(
10u3u1 − 55u2

2 + u4
1

)
,

c =
1

u8
1

(
u5

1u3 − 3u4
1u

2
2 − u8

1 − 3u3
1u5 + 65u2

1u2u4 + 50u2
1u

2
3 − 615u1u

2
2u3 + 735u4

2

)
,

is of the form from Lemma 2 (α = 1/2, β = −1). The function h(u) = −u/2 is a solution of

the ordinary differential equation

∂5h

∂u5
+
∂3h

∂u3
− 2

∂h

∂u
− 1 = 0.

The functional P = −1
4

∫
u2dx satisfies the condition DδuP = u1.

Example 5 (see [45]). The operator

D =
1

2u4
1

D5
x +D5

x ◦
1

2u4
1

+ bD3
x +D3

x ◦ b+ cDx +Dx ◦ c,

where

b =
1

2u6
1

(
10u3u1 − 55u2

2 + 2 sin(u)u4
1

)
,

c =
1

u8
1

(
3u6

1u2 cos(u) + 2u5
1u3 sin(u)− 6u4

1u
2
2 sin(u) + (sin(u) + u)u8

1 − 3u3
1u5

+65u2
1u2u4 + 50u2

1u
2
3 − 615u1u

2
2u3 + 735u4

2

)
,

is of the form from Lemma 2 (α = sin(u), β = sin(u) + u). The function h(u) = 1 is a

solution of the ordinary differential equation

∂5h

∂u5
+ 2 sin(u)

∂3h

∂u3
+ 3 cos(u)

∂2h

∂u2
− sin(u)

∂h

∂u
+ 2

∂h

∂u
+ h− 1 = 0,

and hence the functional P =
∫
u dx satisfies the condition DδuP = u1.
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To conclude, we give an outline of the algorithm enabling one to decide whether a given

translation-invariant fifth-order Hamiltonian operator has momentum.

Algorithm. Let a fifth-order translation-invariant Hamiltonian operator D : A → A be

given.

Step 1 If its leading coefficient depends on uxx, then express the leading coefficient in the

form
±1

(α(u, ux)uxx + β(u, ux))6
.

Use the special contact transformation

x = y + w(v, vy), u = ψ(v, vy)

which is the inverse to the special contact transformation

y = x+ w̃(u, ux), v = ψ̃(u, ux),

where w̃ nonzero and ∂w̃
∂ux
6≡ 0, and w̃(u, ux) and ψ̃(u, ux) are functions that satisfy

the following two differential equations:

∂ψ̃

∂u
ux + 1 =

α

β

∂ψ̃

∂ux
, (1 +Dx(w̃))

∂ψ̃

∂ux
=
∂w̃

ux
Dx(ψ̃).

In this way we reduce the fifth-order Hamiltonian operator to the operator whose

leading coefficient depends at most on ux.

Step 2 Now we consider a Hamiltonian operator with the leading coefficient that depends

at most on ux. According to [6], this leading coefficient can be written in the form

±1

(α(u)ux + β(u))4
.

Step 3 If β 6≡ 0 then the operator D does not possess momentum. If β ≡ 0 then the

Hamiltonian operator possesses momentum, and the associated functional P can be

found using the approach described earlier in this section.

8. Presentations related to the thesis
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