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1. INTRODUCTION

This thesis is based on three independent papers [44], [45] and [46]. Their common sub-
ject are Hamiltonian structures and associated Hamiltonian and bi-Hamiltonian evolutionary
partial differential equations. All three papers constitute an integral part of the thesis.

The first paper “The Darboux coordinates for a new family of Hamiltonian operators and
linearization of associated evolution equations” was published in Nonlinearity in 2011 (see
[46]) as well as the second paper entitled “A complete list of conservation laws for non-
integrable compacton equations of K (m,m) type,” published in 2013 (see [44]). The third
paper “Low-order Hamiltonian operators having momentum” was published in the Journal
of Mathematical Analysis and Applications in 2013 (see [45]). All of these three papers
contain new results in the theory of Hamiltonian evolutionary partial differential equations.

Informally, a Hamiltonian structure for a system of PDEs is just an operator giving rise
to a Lie algebra structure (the Poisson bracket) on a suitable space of functionals. Its
significance stems inter alia from the fact that for a Hamiltonian system the Poisson bracket
of two conserved quantities is again a conserved quantity, see below for details. Moreover, as
explained below, Hamiltonian structures provide a correspondence among conservation laws
(and more broadly, cosymmetries) and symmetries. This correspondence plays an important
role in the study of qualitative properties of the solutions of Hamiltonian systems (e.g.
stability thereof) and frequently has deep consequences in physics.

The general theory of Hamiltonian structures (also known as Poisson structures) for finite-
dimensional dynamical systems in their general form without relying on the canonical coor-
dinates dates back to Sophus Lie (see e.g. the discussion in Chapter 6 of [29]). The extension
to the case of systems of evolutionary PDEs goes back to the work of V.I. Arnol’d [1, 2] on the
Hamiltonian structure of the Euler equations and to the discovery of Hamiltonian structure
of the celebrated Korteweg—de Vries equation by C. Gardner [16]. Since then the subject
underwent a very intense development which hardly lends itself to a reasonably concise de-
scription; see e.g. the monographs [4], [9], [10], [13], [19], [28], [29] and references therein.
We only mention here the Dirac structures, an important and very broad generalization of
Hamiltonian structures introduced by Dorfman [10].

The interest of international mathematical and mathematical physics communities in the
theory of Hamiltonian and bi-Hamiltonian structures and the systems of partial differential
equations related to these structures remains steadily high and was further increased by the
recent advances in the field made by V. G. Kac et al. (see e.g. [7, 8] and references therein)
using the Dirac structures and the so-called Poisson vertex algebras.

The bi-Hamiltonian systems, introduced by F. Magri [20], i.e., the systems admitting
a pair of substantially different Hamiltonian operators (the so-called Hamiltonian pair),

deserve special attention. Such systems are usually integrable, which in particular means



that a sufficiently rich set of their solutions can be found. Bi-Hamiltonian systems occur in
many areas, e.g. in mechanics, hydrodynamics, electrodynamics and others. This is one of
the main reasons of interest in classification and study of the Hamiltonian operators: this
can lead to new Hamiltonian pairs and hence to new integrable systems.

The theory of Hamiltonian and bi-Hamiltonian structures was developed by many math-
ematicians and physicists, in particular, V. I. Arnol’d, I. Dorfman, V. G. Drinfeld, B. A.
Dubrovin, L. D. Faddeev, A. S. Fokas, I. M. Gel'fand, V. G. Kac, F. Magri, S. P. Novikov,
P. J. Olver, V. E. Zakharov and others.

The two subsequent sections are of introductory nature and closely follow [29].

2. BASIC DEFINITIONS AND NOTATION

Throughout the thesis we work with Hamiltonian operators and Hamiltonian differential
evolution equations in jet spaces. The introduction of jet spaces allows us to look at differ-
ential equations as algebraic ones. Below we shall not discuss the fairly sophisticated theory
of jet bundles that occurs in the geometric theory of partial differential equations. Instead
we define the jet space just in coordinates. Unless otherwise explicitly stated, all objects

below will be assumed to be smooth.

Definition 1. Let X ~ R? and U ~ R? be vector spaces with the coordinates z1,...,z, € R
and u',... u? € R respectively. Let J = (ji,...,jx) with 1 < j; < p be a multi-index of
pt+k—1

order |J| = k. Let Uy ~ R%P¢ where p, = h , be a vector space with the

coordinates u9, |J| = k,a € {1,2,...,q}. The space
XxUM=XxUxU x-- xU,
is then called the jet space of the n-th order.

Note that in the case ¢ = 1, p = 1 the coordinates in the jet space of the n-th order are
also denoted by x, u, Uy, Upy, Uz, - - - Upog O T, Uy U, U, U,y « v vy Uy

The coordinates on the n-th order jet space represent the independent variables, the
dependent variables and the derivatives of the dependent variables with respect to the in-
dependent variables up to the order n. The n-th prolongation of a function f : X — U
is a function pr™f : X — U™ the coordinates of pr™ f(x) being u§ = 9,f*(z), where
0y = % and J = (J1,...,Jk)- In many cases it suffices to consider only an open subset
M®™ = {(z,u™) € X x U™ (z,u) € M C X x U} of the n-th order jet space.

A smooth function P = P(z;,u®,u5) which depends on the independent variables, the
dependent variables and finitely many derivatives of dependent variables with respect to
independent variables is called a differential function. It is easily seen that each differential
function is a function P : M*) — R, for some k € NU{0}, where the smallest such k is called

the order of the differential function P and is denoted as ord P. If we are not interested in



how many derivatives P depends on we write simply P = Plu]. The set A of all differential
functions carries the structure of a ring with the multiplication of differential functions.
Recall briefly several important operators defined on A. The total derivative D,, : A — A

with respect to the independent variable x; is defined as

Dei =5, +;Zu‘”a a’

where u§; is defined as uj; = %. Note that if P = Pu] is a differential function then the
’ ’ J

sum D, (P) is actually finite, so no convergence issues arise. The total derivative D; : A — A

w. 0D, o---0D

J1 J2

The Euler-Lagrange operator E : A — A? is a ¢-tuple of operators E = (E\,..., E,),

with respect to a multi-index J = (ji,...,Jx) is defined as D; = D

xjk .

where each F, is an operator E, : A — A defined as

0
Ey:=) (=D)jo~——,
2D g
where (—D); = (=1l Dy, oDy, o0---0D, forJ=(ji,jz,..jx). The total divergence
operator is the operator Div : AP — A defined for any p-tuple of differential functions
(Pr,...,P,) € AP as

Div(Py,..., P,) i= Da,(P) + Dy (Py) + -+ - + Dy (Py).

Let © =), Ps[ulD; : A — A be a linear operator. The adjoint operator to the operator ®
is an operator ©* : A — A which satisfies (see e.g. [29])
/ R-®(S)dx = / S-®*(R)dx
Q Q
for all differential functions R, S € A that vanish for u = 0, for every domain 2 C R? and
every function u = f(x) with compact support in Q. By easy computations it can be verified
that

D = Z(_D)J o Py,

J
which means that for any differential function @ € A the equality ©*(Q) = >_ ,(—D)(P;-Q)
holds.

The notion of the adjoint operator can be easily extended to the case of matrix differential
operators in the following way. Let ® : A? — A% be a matrix differential operator with
entries Dy;. Then the adjoint operator ©* : A9 — A? is a matrix differential operator with
entries D5, = (Dyi)*

Let P = (Py,...,P,) € A" be an r-tuple of differential functions. The Fréchet derivative

of the vector function P is a differential operator Dp : A? — A" such that

Dp(@) = | (Plut=Qlul)).



It is easily seen that the operator Dp is a ¢ X r matrix differential operator with entries
0P,
> ouy

(DP),uz/ - DJ7

where p=1,...,randv=1,...,q.
Now, any n-th order (smooth) system of differential equations can be viewed as a zero set
of differential functions:

Ey(z,u™)y=0, p=1,...,1, (1)

where z = (71,...,7,), u = (u!,...,u?), and u(™ denotes the derivatives of u®s with respect

to x;s up to the order n. A solution of this system of differential equations is a smooth func-

tion f(z) such that ﬁu(x, pr®™ f) =0 for all 4 = 1,...,l whenever z lies in the domain of f.
A generalized vector field v is defined by the formula

. d )
v = ;gl[u]axi + ;qﬁa[u]%,

where £%[u], ¢o[u] are differential functions for all i = 1,...,p and a = 1,...,q. The prolon-

gation of v is a formal sum

P9 I 0
prv = ;51[“]&52 + ;Z}:qﬁi[u]au?;,

where the sum is taken over all multi-indices J, and

P P
¢l =Dy (asa -3 w) + )&l
i=1 =1

Note that for any generalized vector field v its prolongation pr v : A — A is a derivation of

the algebra A of differential functions. Again, no convergence issues arise because for any

differential function a € A the sum pr v(a) is finite.

Definition 2 (see [29]). A generalized vector field v is generalized symmetry of the system

(1) if

prv(F,)=0forall p=1,...,1

on the solutions of (1).

Note that if all £ and ¢,, are functions of # and u only, v is the infinitesimal generator of
the classical (Lie point) symmetry.

Let v be a generalized symmetry of (1). Define its evolutionary representative, i.e., a
generalized vector field v of the form vg = >"7_| Qa[u]a%, where Qo = ¢o — > b, E'ud.
It is easy to prove (see [29]) that v is a generalized symmetry for (1) if and only if so is vg.
Moreover, both v and v are equivalent in the sense that they differ by a trivial symmetry,
i.e., by a generalized symmetry whose coefficients vanish on solutions of (1). Therefore when

we are looking for symmetries of a given system we can without loss of generality restrict



ourselves to the symmetries in evolutionary form. The main advantage of the evolutionary

form of a generalized vector field is a simple form of its prolongation:

pr (vg) = pr (Z CMU]%) =Y DsQu s
a=1 a,J J

The g¢-tuple of differential functions Q@ = (Q1,...,Q,) is called the characteristic of the
generalized symmetry vg. From now on by a symmetry we mean a generalized symmetry
in the evolutionary form.

If we consider a system of evolution equations

u = F(z,u™), (2)
where u = (u',... u?), v = (2,... 2P), F = (Fy,...,F,) is a ¢-tuple of differential func-
tions, and u(® denotes the set of all derivatives of u up to order n not involving the differ-
entiation w.r.t. the time ¢, then the symmetry condition (2) on v can be rewritten in the
form

Di(Q,) =prvg(F,) forallv=1...,q,

—_—

where we now assume without loss of generality that @ = Q(z,t,u®) is free of the the
derivatives of u involving the differentiation w.r.t. t.

The Fréchet derivative of a differential operator ® = ), Px[u]Dg with respect to an
evolutionary vector field v is the differential operator pr vo(®) = > pr vo(Pr)Dk-.

A conservation law for the system (1) is the divergence expression
Div(R) = 0, (3)

which vanishes on all smooth solutions of (1), where R = (Ry,...,R,) is a p-tuple of dif-
ferential functions. For an evolutionary system (2), one of the independent variables, the
variable labeled ¢ which usually stands for the time (i.e., the evolution parameter), is natu-
rally distinguished from the other independent variables. In this case the conservation law
(3) can be written in the form

Dy(p) = Div(0),

where the total divergence Div on the right-hand side does not contain the total time deriv-
ative.

The differential function p = p(z, t, ul®) ) is called the density of a conservation law, and the
p-component differential vector function o = o(z,t, %) is called the fluz. It can be shown

(see e.g. [29]) that for any Q@ C X the functional T[t,u] = [ p dz is a constant (depending
)
on the solution!) for any given solution u = f(z) of (2) such that ¢ — 0 as x — 9f.

It can be proved that the g-tuple E(p), where FE is the Euler-Lagrange operator, satisfies

the equation
Dy(E(p)) + DR(E(p)) =0,



which means that E(p) is a cosymmetry for (2).
A formal symmetry of order m for the n-th order evolution system (2) in one independent

variable z is a formal series

k
6 == Z ljDi,
j=—00

where the coefficients I; are ¢ x ¢ matrices with differential functions (again free of the

derivatives of u involving the differentiation w.r.t. ¢) as entries, such that
deg (Dy(6) — [Dp,6]) <n+k —m.

Here the symbol deg stands for the degree of a formal series; recall that for 9t = Zj:_oo b; DI
with by # 0 we have deg 9t = s by definition, see e.g. [21, 22].

The procedure of finding formal symmetries whose coefficients do not explicitly depend on
the time ¢ for a given evolution system (2) is described in [21, 22, 23] both for the scalar case
(¢ = 1) and the vector case (¢ > 1). Unfortunately, for the vector equations it is efficient only
under certain technical assumptions on (2), see e.g. [21, 22| for details. On the other hand,
the theory of time-independent formal symmetries for scalar evolution equations is essentially
complete. The existence of formal symmetries is studied mainly using the so-called canonical
densities.

Throughout the rest of this section we will consider only scalar equations (¢ = 1) in one

independent variable x, i.e., equations of the form

w = F(x,u,up, ... up), (4)
where F' = F[u] is a differential function, and u; = &7u/d27.
Theorem 1 ([22, 23]). Let & be a time-independent formal symmetry of order N > n and
of the degree k for the equation (4). Then (4) possesses N — n conserved densities

| res(&7F) i#£0
P res log(&) i =0,

where it = —1,0,..., N —n — 2.

k

Recall that the residue and logarithmic residue of the formal series 9t = ) im—oo

1;Di are
the coefficients res 9 :=[_; and log res 9 := I/, respectively.
It can be proved (see e.g. [21]) that a first few canonical densities (5) can be expressed

also in terms of the coefficients of the operator Dp.



For instance, the first canonical densities for an n-th order evolution equation (4) with

n > 2 are, up to a suitable choice of normalization, given by the formulas (see [21, 22, 23])

oF\ V"
o= (5) ©)

8F/8un_1

Po = —GF/aun' (7)

This yields a criterion for existence of a formal symmetry of any fixed order and, as the
following theorem implies, also provides a criterion for the existence of a time-independent

generalized symmetry with the characteristic of the fixed order:

Theorem 2 (see [22, 23]). Equation (4) possesses an explicitly time-independent formal sym-
metry of order N > n if and only if the first N—n canonical densities p;, i = —1,0,1,2,... , N—
n — 2 are densities of local conservation laws.

FExistence of an explicitly time-independent formal symmetry of order ¢ > N is a neces-
sary condition for (2) to possess explicitly time-independent generalized symmetries with the

characteristic of order q.

Time-dependent generalized symmetries and time-dependent formal symmetries are treated
inter alia in [41]. There the general form of a few leading terms for any time-dependent for-

mal symmetry of order r > n is given:

Theorem 3 (see [41]). Any formal symmetry R of (4) of degree k and of order r > n can

be written in the form

j=hont1 2 (8)

1, -n n
—F—dk(t)D;l((I)il/n)Dg? +1)/ ,
n

W d im kK —1/g—1-1 (k—n+1)/n
R=R+ Y d;(t)D¥ +n—dk(t)Dz (@~ 1Y Dy(®))Dis

where ® = OF/0u,, d;(t) are functions of t, and R is a formal series such that degR <
k—n+1.

The rigorous definition of fractional powers of formal series used in (8) can be found in
(22, 23].

In general, we see that there is an important relation among time-independent generalized
symmetries and time-independent formal symmetries and canonical densities. This fact
and the results from [41] are employed in section 6 below and in [44] in finding all time-

independent generalized symmetries.



3. HAMILTONIAN OPERATORS AND THE ASSOCIATED HAMILTONIAN EVOLUTION
EQUATIONS

In this section we consider matrix differential operators in total derivatives ® : A? — A9,

their entries being differential operators of the form
D = Z Py, g[u]Dy,
J

where Py, j[u] are arbitrary differential functions. We also give several equivalent conditions
for the differential operators to be Hamiltonian.

Introduce the following equivalence relation on A: Two differential functions P, and P, are
equivalent if they differ by a total divergence of a differential vector function Q: P, — P, =
Div@. The quotient space A/Div is denoted by F and its members are called functionals.
The equivalence class of a differential function P is denoted by [ Pdz.

The bracket associated with a differential operator ® is a R-bilinear map {-,-} : FxF — F
defined by the formula

(P, L} = /5? - D(EL)dx, ()

where P = [ Pdx and L = [ Ldz. The operator ¢ in (9) is the variational derivative
6:F - A%6:P= [ Pde— E(P).

Definition 3. (see [29]) A linear differential operator in total derivatives ® : A? — A9 is
said to be Hamiltonian if the associated bracket {-,-} : F x F — F is Poisson, i.e., it satisfies
the following conditions:

(1) {R,L} = —{L, R} (skew symmetry)

(2) {{P, L}, R} + {{R, P}, L} + {{L, R}, P} =0 (the Jacobi identity).

The definition of Hamiltonian operators by means of Poisson brackets is conceptually
transparent but it is rather difficult to use in concrete computations. Conditions equivalent
to the skew-symmetry condition and the Jacobi identity condition of Poisson brackets were
studied by Olver [29], Dorfman [10], and others. Several of them are listed below.

Theorem 4 (see [29]). Let ® : A? — A9 be a matriz differential operator. Then the
associated bracket {-,-} : F x F — F is skew-symmetric if and only if the operator ® is

skew-adjoint, i.e., D* = —2.

Theorem 5 (see [29]). Let ® : A9 — A? be a skew-adjoint matriz differential operator.
Then the associated bracket {-,-} : F x F — F satisfies the Jacobi identity condition if and

only if the condition

/ [P (pr Vo) (®)(R) + Q- (pr vaum(D))(P) + R - (pr varr)(®))(@)dz = 0

holds for all g-tuples of differential functions P,Q, R € A1.



For example, any skew-adjoint matrix differential operator whose entries have constant
coefficients or quasi-constant coefficients is always a Hamiltonian one. This readily follows
from the above theorem.

The condition in the following theorem was obtained by Dorfman in [10] only for translation-
invariant Hamiltonian operators in one independent variable. It can be shown that it remains

valid for a broader class of operators:

Theorem 6 (cf. [10]). The skew-adjoint matriz differential operator ® : A1 — A? is Hamil-
tonian if and only if the following condition holds for arbitrary Q, R € A:

(DoQ)DR — (DaR)DQ =D (Do R)"Q, (10)
where for any QQ € AY the operator D@ : AY — A? is defined by the formula
(DpQ)R :=pr vr(D)(Q).

We now define Hamiltonian evolution equations related to a given Hamiltonian operator
D. For a given functional H = [ Hdz they are precisely the equations of the Hamiltonian

flow associated to the Hamiltonian evolution vector field with the characteristic ®(6FH):

Definition 4. Let u; = Q[u] be an evolution system. We say that this system is Hamiltonian
with respect to a matrix Hamiltonian differential operator ® with a Hamiltonian functional

H if the right-hand side @) of our system can be written as
Qlu] = D(6H).

Example 1. (see e.g. [29]) The Korteweg—de Vries equation
Ut = Uggy T Uy

can be written in Hamiltonian form in two ways, the first being
Ly
Uy = Dz Ugr + éu = ®1(5%1)7
where ©; = D, is a constant-coefficient operator, and hence a Hamiltonian one, and H; =
J(—3u2 + gu?)dz, and the second being

2 1
Uy = (Di + §UD”” + §uf"’> u = Do(dHy),

where Dy = D3 + %uDI + %uw is a Hamiltonian operator (now this is not that aparent) and

Ho = [ suida.

Recall that a functional P = [ Pdx is a conserved quantity (or an integral of motion) for
an evolution system (2) if P is a conservation law density for (2).

The Hamiltonian systems enjoy the following important additional property:



Theorem 7 (see e.g. [29)). If P = [ Pdx and P = [ Qdx are conserved quantities for a
Hamiltonian system uy = D(6H) then their Poisson bracket {P,Q} is again a conserved

quantity for the system under study.

This means that, at least in principle, we can obtain new conserved quantities by taking the

Poisson brackets of the known ones.

Definition 5. We say that linearly independent Hamiltonian differential operators ®; and
D, form a Hamiltonian pair (or that they are compatible) if every R-linear combination
a®1 + b, is also a Hamiltonian operator. An evolution equation which can be written in
Hamiltonian form in two ways so that the Hamiltonian operators in question are compatible

is said to be bi-Hamiltonian.

It is important to stress that under certain fairly minor technical assumptions bi-Hamiltonian
systems are completely integrable in the sense that they have infinitely many conserved quan-
tities that Poisson commute with respect to both Poisson brackets associated with ©; and
D,, see e.g. [4], [10], [8] and [29] for further details.

Example 2. It can be proved that the Hamiltonian operators ®; and ©( from Example 1
form a Hamiltonian pair. Hence, the Korteweg—de Vries equation is a bi-Hamiltonian equa-

tion.

We now take a somewhat closer look at the symmetries and conservation laws of Hamilton-
ian evolution systems. Let ® be a Hamiltonian operator and let us consider the associated
Hamiltonian system

u = D(6P), (11)
where P is a functional. Recall that a functional C is called a Casimir functional, if ©(0C) =
0. In terms of the Poisson bracket, a functional € is a Casimir functional if and only if
{C,H} =0 for all H € F. Recall that a Hamiltonian vector field associated to a given

Hamiltonian operator ® and a functional H is the unique vector field v4¢ which satisfies
Va(P) = {P,H} for all functionals P € F.

It can be verified that such a Hamiltonian vector field has the characteristic equal to DdH.
Note that a Hamiltonian operator ® yields a Lie algebra homomorphism 2 o ¢ from the
Lie algebra of functionals endowed with the Poisson bracket associated with ® to the Lie
algebra of evolutionary vector fields, see e.g. [4] or [29] for details.
There is a nice Noether-type correspondence between symmetries and conservation laws

for Hamiltonian systems:

Theorem 8 (see e.g. [29]). Let uy = DOH be a Hamiltonian system of evolution equations.
A Hamiltonian vector field vy with the characteristic 0P determines a generalized symme-

try of the system under study if and only if there is an equivalent functional P=2P-C¢C,

10



differing from P by a time-dependent Casimir functional C[t,u] such that P is a conserved

quantity and thus defines a conservation law.

4. THE CLASSIFICATION RESULTS CONCERNING HAMILTONIAN OPERATORS IN ONE
INDEPENDENT VARIABLE * AND ONE DEPENDENT VARIABLE u

In this section we give a brief survey of the results concerning the classification of Hamil-
tonian operators in one independent variable z and one dependent variable u obtained re-
spectively by Olver [31], Cooke [6] and, more recently, by de Sole, Kac and Wakimoto [7].
Because of the nonlinear Jacobi identity condition the classification of Hamiltonian opera-
tors is quite difficult. It should be mentioned that to date the classification of Hamiltonian
operators of this type is available only up to the order 11 (recall that since a Hamiltonian
operator must be skew-adjoint its order is always an odd number), where in the case of the
operators of the 1st, 3rd and 5th order the general formulas for them are known whereas the
operators of the 7th, 9th and 11th order are described only modulo contact transformations.
We also provide a discussion of the so-called Darboux coordinates for Hamiltonian operators
in one dependent and one independent variable. In the last part of this section we survey

some known results on Hamiltonian operators that possess momentum.

Theorem 9 ([25]). Let ©; be a Hamiltonian operator in the variables x,u. Under the

differential substitution

=@y, v,v1,...,Un), u=10y,v,01,...,0,), (12)

where v; = Di(v), and D, is the total derivative with respect to y, the operator D, goes into

the Hamiltonian operator o defined by the formula
D1 = (Dy(p)) 'R 0Dz 0 8, (13)

where

max(m,n)
o 0 0
8= Y 0Dy (5EDe - 5EDW),

i=0
R* is the formal adjoint of R, and D, is obtained from D, upon using (12) and setting
Dy = (Dy()) "' Dy,

Note that in general a differential substitution may be non-invertible. However, there is
a subclass of the class of differential substitutions which has a group structure, namely, the

pseudogroup of contact transformations.

Definition 6. A contact transformation is a transformation of the form
1

r=e\y,v,v 7U:¢y7vav 7D:B:_D7
(1.0, 4= ¥{y.0.2,). D = 5D,

11



which satisfies the following conditions:

do O _ 0y 9pDyy
v, D= v, Dy, and Dy and p = ov  Ov Dyp

A special contact transformation is a contact transformation of the form (see e.g. [25])

are nonzero differential functions.

r=p(y,v,vy) =y +w(v,v,) and u = P (v,v,).

As it was said above, the set of all contact transformations is a pseudogroup with respect

to the composition. The set of all special contact transformations also forms a pseudogroup.

Theorem 10 (see [25])). A differential substitution preserves the order of a scalar local

Hamiltonian operator if and only if it is contact.

Note that in general the operator ®, may contain nonlocal terms unless (12) is a contact
transformation, cf. e.g. [3, 7, 25].

Before we treat general forms of Hamiltonian operators recall the notion of the so-called
level lev ® of a Hamiltonian operator ® = Zf:o P,[u] D} which is defined as max;{i+ord P,}.
It is proved (see [7]) that, with the exception of m =1 in the case N = 3, the only possible
values m of the level of a non-quasiconstant-coefficient Hamiltonian operator of order N < 11
arem = N, N+1, N+2 (we say that ® = Zf:o P;[u] D is a quasiconstant-coefficient operator
if its coefficients depend only on z).

The general form of the first-order Hamiltonian operators was originally found by Dorfman
and Gel'fand in [17] but there it was done only for Hamiltonian operators that did not
explicitly depend on the space variable x. Their result was extended by Olver in [31]. The
general forms of the third- and fifth- order Hamiltonian operators were found by D. B.
Cooke in [6]. We present here only those results that are relevant for us, i.e., mainly the
results concerning the leading coefficients and the general form of a fifth-order Hamiltonian
operator with the leading coefficient equal to 1, which (in the case of fifth-order Hamiltonian
operators) will be important for us in section 7 below and also in [45]. The conditions on
the coefficients of a fifth-order operator in order for the latter to be Hamiltonian are listed

in that section for a certain special case.

Theorem 11. The following assertions hold:

(1) (see [31]) Any first-order Hamiltonian operator ® must be of the form
1 1
Dy ;
Ea) """ Ba)

@:

where a = a(x, u, u,).
(2) (see [6]) Any third-order Hamiltonian operator ® must be of the form

1 1\°
D= ? e (Dgc o ?) + lower-order terms,

where f = auy, + 5, o = a(x,u,u,) and g = B(z, u, u,).
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(3) (see [6]) Any fifth-order Hamiltonian operator © must be of the form

1 17°
H= F o {Dx o ?} + lower-order terms,

where f = au,, + 0 and a = a(z,u,u,) and § = [(z,u, uy).

Theorem 12 (see [6]). A fifth-order Hamiltonian operator whose leading coefficient is 1

must be of the form

D=D>+bD>+D3ob+cD,+ D,oc,

where b and ¢ are functions of x alone. Otherwise they are given by

b = §(u—irOc)’l(um—iro/')—z(u%—oz)’Q(ugc—|—o/)2+6(u—|—oz)—l—fy,

2 4
P A B3 L vz wzi  wiz | 9nzz 12927z 2732
z 2z 2z 422 z 222 823 3224
3322 Bz 320" [Ba (222 w?
22 2 2 2 o

where a, (3, and v are functions of x only, w and z are given by
w=pz+7v z=u+q,

and w; = Di(w), z; = Di(z).
If B =0, then any choice of a and ~y yields a Hamiltonian operator.
If B # 0, then

B2 28 45

/! /2
p_ B (B)
where p is an arbitrary constant.

As we have already mentioned at the beginning of this section, the classification of scalar
Hamiltonian operators of the 7th, 9th and 11th order was obtained using the Poisson vertex
algebras by de Sole, Kac, and Wakimoto in [7] modulo contact transformations, i.e., the
authors defined the following equivalence on the set of all scalar Hamiltonian operators of a
given order: two Hamiltonian operators ®; and ®, are equivalent, if there exists a contact
transformation which turns ®; into ®,. Namely, de Sole, Kac and Wakimoto [7] have found a
complete list of canonical forms for 7th-, 9th- and 11th-order Hamiltonian operators modulo
contact transformations and gave a conjectural list of such normal forms for all odd orders.

Moreover, in [7], a new family of compatible Hamiltonian operators

1 2n
H(N’O):D§O<_Dx) ODx,N:2n+3,n:O,1,2’,_.
u

was introduced and the following conjecture was made:
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Conjecture 1 (see [7]). For any translation-invariant Hamiltonian operator H of order N >
7 there exists a contact transformation that turns H into either a quasiconstant coefficient
skew-adjoint differential operator or into a linear combination of the operators HU®) with
3<j<N, 7 odd.

This conjecture could be a starting point in the solution of one of the most important
problems in the theory of infinite-dimensional Hamiltonian systems, the problem of find-
ing the Darboux coordinates; for more details see section 5 below and [46]. It is basically
the question of whether, given a Hamiltonian operator ©, there exist canonical coordinates
such that ® takes some simple form, usually the form of the Gardner operator D,. This
is analogous to the case of finite-dimensional Hamiltonian systems where such coordinates
do exist by the celebrated Darboux theorem. The existence of these coordinates (we still
call them the Darboux coordinates to stress the analogy with the finite-dimensional case) for
the first-order Hamiltonian operators in one independent and one dependent variable was
established by Olver; the same results for the third- and fifth- order Hamiltonian operators
in one independent and one dependent variable were obtained by Cooke [6]. For higher-order
Hamiltonian operators the problem is still open.

A quite important property of Hamiltonian operators in one independent and one depen-

dent variable is the existence of momentum.

Definition 7. Let ® be a Hamiltonian operator in one independent variable x and one
dependent variable u. We say that ® has momentum if there exists a functional P such that

D(5P) = u,.

Note that this definition readily extends to the case of several dependent variables.

The existence of momentum for a given operator ® can be employed [25] e.g. for averaging
the corresponding Hamiltonian system u; = ®(dH) or for finding the traveling wave solutions
of the form u(x — at) for the Hamiltonian system u; = D(0JH) in the following way: let ©
be a Hamiltonian operator that possesses momentum, i.e., there exists a functional P such
that ©(6P) = u,. Let u = u(z — at) be a solution of the Hamiltonian equation u; = D(0KH).

The function u(x — at) satisfies

u + au, = 0.

Therefore, it also satisfies the equation
D(0H + 6aP) = DH(H + aP) = 0. (14)
The above equation (14) is equivalent to a lower-order one:

5(H + aP) = 5C, (15)
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where C is the (most general) Casimir functional for ©. It can be shown that for ® =
S pilu] DE we have 6€ = Q(x,u). With this in mind equation (15) is usually much easier
to solve than (14).

Operators having momentum could be also employed for the construction of hierarchies
of local symmetries (or higher commuting flows) in the following fashion.

Suppose we are given a Hamiltonian operator in one dependent variable u and one
independent variable z, say ®, possessing momentum, which means that there exists a
functional P = [ hdx such that u, = D(6P). Further assume that there exists another
translation-invariant Hamiltonian operator € which is compatible with © and that the oper-
ator R := € oD !is a weakly nonlocal hereditary operator. Then R is a recursion operator
for the equation u;, = u, and, under a further minor technical assumption of normality
of R in the sense of [39], by Theorem 1 from [39] the quantities $R’(u,) are local and the
associated flows commute for all ¢+ = 1,2,3,..., and we thus have an infinite hierarchy of
local commuting flows u;, = % (u,), j =0,1,2,....

The classification of Hamiltonian operators having momentum was initiated by Mokhov

[25]. The first result in this direction is the following proposition:

Proposition 1 (see [25]). Let © be a Hamiltonian operator that possesses momentum. Then

9 is translation-invariant.

Mokhov [25] has also established that the existence of momentum is preserved by the
special contact transformations, so one can perform the classification modulo the latter. He

succeeded in classifying all first- and third-order Hamiltonian operators having momentum:

Theorem 13. (see [25])

(1) A first-order Hamiltonian operator has momentum if and only if it is translation-
invariant.

(2) An arbitrary translation-invariant Hamiltonian operator of the third order can be
reduced by a special contact transformation to one of the operators (16)-(18).

(a) An operator

1
D= i D+ 25D, + D,S] o — +2fD, + D,f, (16)
where §' = % — %EZ?;; and f is an arbitrary function of u only, has momentum.

The corresponding functional is of the form [ p(u)dz, where p(u) is the solution

of the equation

84 2p op Of
el T e R
8u4 2/ ) 8u ou 0.
(b) An operator
D =+ [D} + 2AuD, + Au,], A= const >0 (17)
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has momentum.

(¢) An operator
D =+ [D}+ AD,], A = const. (18)

does not have momentum.

Our results on the classification of fifth-order Hamiltonian operators having momentum

are treated in section 7 below and further details can be found in [45].

5. THE DARBOUX COORDINATES FOR A NEW FAMILY OF HAMILTONIAN OPERATORS
AND LINEARIZATION OF ASSOCIATED EVOLUTION EQUATIONS.

In the paper [46] we consider a recently introduced family of compatible Hamiltonian op-
erators from [7] of the form HN0) = D?0((1/u)oD)?>" oD, where N = 2n+3,n =0,1,2,....
For each of these operators we found a differential substitution which turns this operator
into a simpler form. In Theorem 14 we present a transformation which simultaneously turns

the operators H™:0 for all N > 3 into operators with constant coefficients:

Theorem 14 (see [46]). The transformation x = v, uw = 1/v, turns the N-th order Hamil-
tonian operator HN?) = D2 o ((1/u) o D,)*" o D, where N =2n+3, n=0,1,2,..., into

the Hamiltonian operator with constant coefficients HWNO) = —DZ"“.

Note that the transformation z = v,u = 1/v, can be realized as a composition of the
potentiation = z, u = w, and the hodograph transformation z = v, w = y, the latter
transformation being contact (and actually even a point one).

We can further strengthen the result of Theorem 14 and find for each operator H™:9) with

N > 3 the corresponding Darboux coordinates:

n+1 n+1

Corollary 1 (see [46]). The transformation © = (—1)2 wy, u = (—1)"2 Jwy41 where
(N,0)

wy, = D¥(w), and z is the new independent variable maps the Hamiltonian operator H
D2%o ((1/u) o D,)*" o D, into the first-order Gardner operator D, for any odd N > 3.

Bringing a Hamiltonian operator into the Gardner form enables us to render the associ-
ated Hamiltonian systems into the canonical Hamiltonian form and construct Lagrangian
representations (modulo potentialization) for these systems [32].

These results can be employed for linearization of potential forms of bi-Hamiltonian equa-

tions
Ut = 91511,71 == 92511,727 (19)
where ©; = Zle cijH (Nij0) j = 1,2, k; are arbitrary natural numbers and c;j are arbitrary

constants:
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Proposition 2 (see [46]). The transformation z = v, w =y, where y is the new independent
variable, linearizes the potential form of the bi-Hamiltonian evolution equation (19). The
potential form of (19) reads

Wy = @1(5le = @2511,72, (20)

o - 2n -
where D; = Zkl cin(Nif’o), i=1,2, HN9Y = _D, o (wLDZ> , and T; are obtained from

j=1
J; using the substitution x = z, u = w,.

Example 3. Consider a bi-Hamiltonian evolution equation
Uy = Di (U_Q) = H(370)5u71 = H(570)5u72a (21)

where T; = — [dz/u and Tp = [ 2?udz.
The potential form (20) of (21) reads

w, = D? (w:?) = ABY5, T, = A5, T,. (22)

Recall that v = w, and # = z; we have H®Y = —D_ HG9 = —D_ o ((1/w,)D,)?,
T, = — [dz/w,, and Ty = [ z%w.dz. Note that (22) has, up to a rescaling of ¢, the form
(2.31) from [5].

In perfect agreement with Proposition 2 (cf. also Proposition 2.2 in [5]) the hodograph

transformation z = v, w = y linearizes (22) into a (trivially) bi-Hamiltonian equation
v = =2y, = H®V6,T) = HOD4,T,, (23)
where H30) = —-D,, HGO) = -D3, T, = — Jvzdy, and T, = [ vidy.
The following corollary now easily follows from the previous results:

Corollary 2 (see [46]). The differential substitution * = v, u = 1/v, relates any equation

of the form (19) to a linear evolution equation with constant coefficients.

The results concerning the transformation properties of the operators H®™:?) can be used
as a first step in the proof of the existence of Darboux coordinates for any Hamiltonian

operator. The proof uses, among other results, the following lemma:

Lemma 1. Given a quasiconstant skew-adjoint differential operator ® = vazo a;(x) DL there
exists a transformation of the form x = y,u = Zf:o bi(x)v; that turns © into the Gardner

operator D,.

Now, using the statement of Theorem 14 and the fact that the transformation from this
theorem is a composition of the potentiation and a contact transformation, Conjecture 1 can

be restated as follows:

17



Conjecture 2 (see [46]). Any translation-invariant Hamiltonian operator of order N > 7
can be transformed into the Gardner operator D by either a contact transformation or a

composition thereof with the transformation x = v,u = 1/v, and a transformation of the

form x =y, u =31 a;(x)v;.

6. A COMPLETE LIST OF CONSERVATION LAWS FOR NON-INTEGRABLE COMPACTON
EQUATIONS OF K(m,m) TYPE

In the paper [44] we consider a family of the so-called generalized K (m,n) equations,
uy = aD>(u") +bDy(u™), a,b,€R, (24)

that are of great interest both for mathematicians and physicists since they describe many
natural wave phenomena with finite span. This family of differential equations in a slightly
less general form first appeared in [37] in 1993 as a family of differential equations whose
solutions are compactons, i.e., solitons with compact support. Below and in [44] we restrict
ourselves only to the case m = n.

If m = n then the K (m,n) equations are easily seen to be Hamiltonian with respect to the
Hamiltonian operator ® = aD? + bD,,, the Hamiltonian functional being H = [ [ u™dudz.

Thus, equation (24) for m = n can be written as
uy = aD2(u™) + bD,(u™) = DSK. (25)

Our goal in [44] is to find all local conservation laws for all non-integrable cases of K (m,m)
equations, and, in particular, to give a rigorous proof of the result of Olver (see [37]) who
found four conservation laws for the K(2,2) equation and claimed without proof that no
other conservation law for this equation exist. This is done using the so-called symmetry
approach to integrability, see the discussion in section 2 and e.g. [21, 22, 23] for details. The
relevant results employed by us below were given in Theorems 2 and 3.

Computing the canonical density p_; from (6) for a generalized K(m,m) equation we
see that it is a conserved density only for the cases m = —2,—1/2,0,1. For all m € R\
{—2,—1/2,0,1} the first canonical density is not a conserved density. The cases m = —2 and
m = —1/2 were identified by Rosenau as integrable cases of K (m, m) equations and for m = 0
and m = 1 the K(m, m) equation is just linear. Therefore we can stop computing canonical
densities at this stage and notice that the K (m,m) equations for m € R\ {-2,—-1/2,0,1}
have no generalized time-independent symmetries of order greater than 3, and hence, in

particular, these equations are not symmetry integrable.

Proposition 3 (see [44]). If m # —2,—1/2,0, 1, then the corresponding generalized K (m,m)
equation (25) has no explicitly time-independent generalized symmetries of order greater than

3; in particular, equation (25) is not symmetry integrable.
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Proposition 3 ensures non-existence of explicitly time-independent generalized symmetries
of order greater than 3. However, this result can be further strengthened using Theorem 1

from [41] to cover also explicitly time-dependent symmetries:

Proposition 4 (see [44]). If m # —2,—1/2,0, 1, then the corresponding generalized K (m,m)
equation (25) has no generalized symmetries of order greater than 3, including explicitly time-

dependent ones.

Proof. For the equations under study we obviously have D;(p_1) € ImD, and p_; € ImD,,
where p_; = (anu™!)~Y/? . This fact in conjunction with Theorem 3 implies that for
any (even possibly explicitly time-dependent) formal symmetry R of order r > 3 we have
di(t) = 0 (see (8)), as the coefficients of a formal symmetry must be differential functions,
and hence the coefficients at the nonlocal terms D;'(®~*3D,(®)) and D;'(®~/3) must
vanish (in our case ® = anu""!, see the definition in Theorem 3). But the equality d,(t) = 0
means that the leading term of our formal symmetry SR must vanish, i.e., we arrive at a
contradiction. This means that the equations under study have no formal symmetries, time-
dependent or not, of order greater than three, and therefore (cf. e.g. the discussion at the
end of section 2 in [41]) they also have no generalized symmetries (be they time-dependent
or not) with the charcteristics of order greater than three. [

Now finding all generalized symmetries becomes just a straightforward computation:

Proposition 5 (see [44]). The only generalized symmetries of (25) for m # —2,—1/2,0,1
are those with the characteristics Q1 = Uy, Q2 = w; and Q3 = (m — 1)tu; + u, i.e., x- and

t-translations and the scaling symmetry.

Now we can find all local conservation laws for all non-integrable cases of generalized
K(m,m) equations. If p is a density of a conservation law of an evolution equation, then
the function v = F(p) is a cosymmetry of the equation in question. Now we use the
Hamiltonian structure of any K (m,m) equation and the fact that Hamiltonian operator
® turns cosymmetries of the equation u; = DJH into symmetries, whence we infer that
D(E(p)) is a symmetry and, since we know that ord(D(E(p))) < 3, we have ord E(p) = 0.

Thus, we arrive at the following result:

Theorem 15 (see [44]). If p is a density of a local conservation law for a generalized K (m,m)
equation, where m # —2,—1/2,0,1, then it is, up to the addition of a trivial density, a func-

tion of x,t and u only.
After straightforward computations we obtain

Theorem 16 (see [44]). The only local conservation laws of the form Dy(p) = D,(o) for
the generalized K(m,m) equation (25) with m # —2,—1/2,0,1, are, modulo the addition of
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trivial conservation laws, just the linear combinations of the four conservation laws which

for b # 0 are given by the formulas

-2 b
p1 = /umdu o = (maumu2m_1 + —am(ﬂ; )uiu2m_2 + §u2m)

p2=1u oy = aDZ(u™) + bu™

—'\/Z_) —Qm'@w—a umcos@x
p3 = usin <%x> o3 =aD;(u )sm(\/a) VabD,(u™) (ﬁ)

= ﬁ = aD?(u™) cos @x a u™) sin @CB
p4—ucos<\/ax) oy =aD;(u™) <\/5 )+\/—be( ) (ﬁ >

If b =0, then the conservation law with the density ps is trivial, and the densities py and py
coalesce. However, there are two other conservation laws in such a case, namely

ps =zu o5 =aD?(zu™) — 3aD,(u™)

pe = r°u o6 = aD%(z*u™) + 6au™ — aD,(zu™),
i.e., for b =0 equation (25) with m # —2,—1/2,0,1 also has, up to the addition of trivial
conservation laws, just four conservation laws with the densities py, pa, ps, ps and the fluzes

01,02,05,06-

If a and b have different signs then sines and cosines of a complex variable appear in the
formulas for ps3, ps, 03 and o4. In this case it is convenient to divide p3 by the imaginary unit

i and use the following real densities and fluxes instead of the above p3, ps, o3 and o4:

) (/D ) i 2 <\/|b| ) . <\/|b| )
3 = cusinh T 03 = caD;(u™)sinh | —=x | — /|ab|D,(u™)cosh | —==x
p ( Tal Dy (u™) Tl Vv |ab| D (u™) Tl

- bl . 20, m il my o bl
4 = ucosh | V== 04 =aD;(u")cosh | =z | —cy/|ab|Dy(u™)sinh | ==z |,
vt (Y] = (o) o o (Y

where c=1ifa>0and b <0, and c=—1if a <0 and b > 0.

The conserved functional corresponding to the first conserved density is the energy, i.e.,
the integral of motion associated with the invariance under the time shifts. If m = 2k — 1
where k € Z \ {0,1}, then the fact that the quantity [«”'dx is conserved immediately
implies the following property of the solutions of the corresponding K (m,m) equation: if a
solution u(z,t) of (25) belongs to the space L*(R), i.e., [, [u|**dz < oo, at the time ¢ = t,
then u(z,t) € L*(R) for all ¢t > t,.

7. LOW-ORDER HAMILTONIAN OPERATORS HAVING MOMENTUM

The paper [45] addresses the problem of classification of Hamiltonian operators possessing
momentum. Namely, there we employ special contact transformations to classify fifth-order

Hamiltonian differential operators in one dependent and one independent variable possessing
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momentum. As it was mentioned in section 3, this problem for first- and third- order Hamil-
tonian operators was solved by O. Mokhov in [25]. Up to a special contact transformation
he classified all first- and third- order translation invariant Hamiltonian operators having
momentum. His results are listed in Theorem 13.

Let us stress that throughout the rest of this section we tacitly restrict ourselves to Hamil-
tonian differential operators in one dependent and one independent variable.

In [45] we build on the work of Mokhov and, using special contact transformations which
preserve the existence of momentum, describe all fifth-order Hamiltonian operators that
possess momentum. Like Mokhov, we look for such operators among the translation-invariant
ones. At the first step we classify all fifth-order translation-invariant Hamiltonian operators

according to their leading coefficient up to special contact transformations:

Proposition 6 (see [45]). Any fifth-order translation-invariant Hamiltonian operator can be
reduced by a special contact transformation to an operator with the leading coefficient equal
to either +1 or :I:%.

1

At the next step we find general forms of fifth-order translation-invariant Hamiltonian
operators with the leading coefficients 1, 1/uf and —1/uj. The general form of any fifth-
order Hamiltonian operator with the leading coefficient equal to 1 was obtained earlier by
D. Cooke in [6], see Proposition 12 above.

We should have also been given here a general form of a translation-invariant fifth-order
Hamiltonian operator with the leading coefficient equal to —1 as well. However, there is
a special contact transformation x = y,u = iv which turns any operator with the leading
coefficient —1 into an operator with the leading coefficient 1, and we will prove below that no
fifth-order Hamiltonian operator with the leading coefficient equal to 1 possesses momentum.
Therefore, as special contact transformations preserve the property of existence (or non-
existence) of momentum, it is readily seen that also no fifth-order Hamiltonian operator
with the leading coefficient equal to —1 has momentum. Hence, the case of the leading
coefficient equal to —1 is not interesting for us, and we can leave it aside.

The conditions from [6] on the coefficients of a general fifth-order Hamiltonian operator
D =aD>+ D2oa+bD?+ D?ob+cD, + D, oc with the leading coefficient equal to uii“

i.e., the case a = 2% are the following
Uy

Jc
Dug
0b
duy
Jc
Oug
0b

dug

=0

8 Ut

Rle
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oc
Ouy
Jc
Ous
ob
ouy
Jc
Ousy

dc
8u1

Oc
ou

3_11@ (85u2 2%u?)

3%4 < 16 ;52 uSuy — 225uyuz — 9D, <86—52) ul 4 410u3 + 6bu?)

3%{ (26%u$u2 + 340ujuz + 7D, (%’2) u! — 550u3 — 6bu§*)

6—11@ < 3%@ + 14oaa—zu1u2 + 80buSuy + 11390uusus — 96 aa b2u1u3 — 14260}
—27D? <aa—i) uf + 21D, (b)u] — 1200u2uy + 283—bzbu}2 — 82D, (%’2) u{uz)
611“ (18 gb ufug — 42D, <%) ulu2 + 416 8662 — 271D, (b)uluy — 856bulu;

ob ob ob
+80bujuz + 14730uTusuy — 214D, (8_1@) ufuz — 68 50 2u1 4 — 136D (81@) uuy

ob ob ob
+2D, < . ) bu? 48—21) +(b)ur® — 92450u uaus — 1080usus — 21D3 ( auz) uf

ob ob ob
+3D2(b)uf + 7610u3u3 — 3D, ( 6u> — 404~ Ul Uz — 487bu}2u2 + 87920u§>
U2 2

1 Ob ob
Gult (-211); (8_u2> u’ +9D? (-) uy” + 28410u5uzuy + 15730uSugus — 66 D2(b)ufu,

ou
—608D, (b)uju; — 717D, (b)uius — 13280busui — 660buiuy — 205510uTusu; — 139340ususu,
b b b
+838900u; usuz — 80D, (b) = 0 Uy — 1416—— 0 uludus — 2062D, o9 uSugus
ou 2 ou Uo 8“2
ob ob ob ob
—4648—26 2u 328—2bu13u3 — 120D, ( au2) butduy — 744 5 2u1u2u4 673120u)

+440cubuy — 6D, (b)but® — 2320%ut?uy — 1092uiug — 9D3 (b)uf + 6D, (c)u]

ob ob ob ob ob
—252D3 | — 956D 408D? ! 8c—— 6—>buj*
- (au2) iz = (au2>“1“2 (au2) it T8 2“ 0,

0b Ob 0b ob 0b
2 90 18 ov _
4b s u;” — 1304D, (3162) ujuy — 282D, <au2) ufuy — 22008 ” 680 2u1u5

b (% ob b b
D, =—]u 192— 12— —12D? 4 _ 12D, D, (b)ut?
+66D, (8u> ujug + 19 5 >+ 5 —ujus <8u2> bu; (81@) (b)uy

b
_7088 2u1u3 + 3124bu1u2u3)

Solving this complicated system of differential equations and a very similar system for the

1

case a = —g .1 We arrive at the following lemma.

2u
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Lemma 2 (see [45]). A fifth-order translation-invariant Hamiltonian operator whose leading
coefficient is 1 /uf must be of the form

1 1
D=+—D'+Do—+bD>+D3>ob+cD,+D,oc,

2uf 2uf
where
1
b= 55 (£10usus F 55u3 + 2auy)
1

1 6, Oa 5 4,2 8 3 2 2,2
c = —3 3u1u20— + 2ujuga — 6ujuso + Buy F 3ujus £ 65ujusuy £ 50ujus

ug U

F615uiuius & 735u§) )
and o and (8 are functions of u only.

Remark 1. It can be shown that there is no special contact transformation which preserves

the leading coefficient and simultaneously eliminates one of the unknown functions «, (.

Now turn to the property of having momentum. Notice that the Fréchet derivative of
the variational derivative of an arbitrary functional is a self-adjoint differential operator, see
e.g. [29]. The following proposition states that any differential function h whose Fréchet
derivative is a self-adjoint operator and which satisfies the condition ©(h) = uy, where ©
is a fifth-order Hamiltonian operator with the leading coefficient of differential order less
than or equal to 1, is of the form h = h(x,u). It can be easily verified that any differential
function of this form is the variational derivative of the functional P = [ [ h(x,u)dudz.
Thus, instead of looking for a functional P such that ©¢,P = wu; it suffices to check the

existence of a differential function h(z,u) that satisfies the condition ©(h) = u;.

Proposition 7 (see [45]). Let © be a fifth-order Hamiltonian operator whose leading coeffi-

cient 1s of differential order less than or equal to 1,
D =aD>+ D3oa+bD3+D3ob+cD, + D,oc, ord(a) <1.
If there is a differential function h[u] such that ®(h) = u, and Dy, = (Dy,)*, then h = h(x,u).
As the last step we use the above proposition and obtain the following results:

Proposition 8 (see [45]). No fifth-order Hamiltonian operator with the leading coefficient

+1 has momentum.

Proposition 9 (see [45]). Any fifth-order translation-invariant Hamiltonian operator with
the leading coefficient +1/ul has momentum, and the corresponding functional P is of the
form P = [ [ h(u)dudz, where h(u) is a solution of the equation

Ph Ph _Oa(u) 0*h  _0*a(u) Oh oh  Pa(u), 0B(u)
i%+2a(u)6u3+3 ou 8u2+3 ou2 du %jL ou3 h ou

where a(u) and B(u) are as in Lemma 2.

+205(u)

h—1=0, (26)
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Combining Propositions 8 and 9 with the fact that special contact transformations preserve

existence of momentum, we arrive at our main result.

Theorem 17 (see [45]). (1) A fifth-order Hamiltonian operator which is not translation-
invariant cannot have momentum.

(2) A fifth-order translation-invariant Hamiltonian operator that can be transformed us-
ing a special contact transformation into an operator with the leading coefficient £1
cannot have momentum.

(3) Any fifth-order translation-invariant Hamiltonian operator that can be transformed
using a special contact transformation into an operator with the leading coefficient

+1/uf has momentum.
Example 4 (see [45]). The operator

1 1
D=—D+Do—+bD>+D3cb+cD,+ D,oc,

2uf T 2uf
where
1
b = o s (10uguy — 55u3 + uy) |
¢ =3 (U1U3 3utul — ul — 3udus + 65uTuguy + 50utus — 615u usus + 735u2)

1
is of the form from Lemma 2 (o = 1/2, § = —1). The function h(u) = —u/2 is a solution of

the ordinary differential equation

Ph  Oh oh

— —2——-1=0.
ou® o ou? Ju

The functional P = —1 [ u?dx satisfies the condition D4, P = u;.
Example 5 (see [45]). The operator

1 1
D=-—D>+Do +bD3 +D3ob+cD, + D, oc,

2uf * 7 out
where
1
b= 5% s (10ugu; — 55u3 + 2sin(u)uy)
1
1
¢ = = (3uSus cos(u) + 2ufus sin(u) — 6utujsin(u) + (sin(u) + w)ui — 3uius

1
+65u3 Uty + 50uiu3 — 615u usus + 735u§) )

is of the form from Lemma 2 (o = sin(u), § = sin(u) + w). The function h(u) = 1 is a

solution of the ordinary differential equation

oh D3h 0%h oh oh
20 19 gr gn oo 1=
0w+ sin(u )8u3 + 3cos(u )8u2 sin(u >(9 T h 0

and hence the functional P = f u dx satisfies the condition 06, P = u;.
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To conclude, we give an outline of the algorithm enabling one to decide whether a given
translation-invariant fifth-order Hamiltonian operator has momentum.
Algorithm. Let a fifth-order translation-invariant Hamiltonian operator ® : A — A be

given.

Step 1 If its leading coefficient depends on u,,, then express the leading coefficient in the

form
+1

(Oé(u, Uz)u:m: + ﬁ(u7 uw))ﬁ ‘

Use the special contact transformation

T=y+ UJ(’U,"Uy), u = ¢(U7 Uy)

which is the inverse to the special contact transformation

where W nonzero and g—li £ 0, and @ (u, u,) and 1(u, u,) are functions that satisfy
the following two differential equations:
oz

—u, +1

ou

_oz(?@/;

o o0 o,
- [ou,’

(1+ Dy(w))

Ouy Uy
In this way we reduce the fifth-order Hamiltonian operator to the operator whose
leading coefficient depends at most on wu,.

Step 2 Now we consider a Hamiltonian operator with the leading coefficient that depends

at most on u,. According to [6], this leading coefficient can be written in the form

+1
(e(w)uz + Fu))*

Step 3 If 3 # 0 then the operator ©® does not possess momentum. If 7 = 0 then the
Hamiltonian operator possesses momentum, and the associated functional P can be

found using the approach described earlier in this section.
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