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LOGIC AND SET THEORY

This text is intended for students attending the lecture Logic and Set Theory. The lecture
is designed as an introduction to foundations of modern mathematics. In accordance with the
author’s preferences, it deals with the Kelley—Morse theory with the axiom of choice and the
axiom of regularity.

1. Introduction

Set theory and mathematical logic are two interrelated mathematical disciplines that lie at
the foundations of mathematics.

Mathematical logic resulted from efforts to formalise the process of mathematical reason-
ing. It provides a language to formulate mathematical propositions and their proofs. It deals
with general axiomatic theories, consistency, provability, theorem-proving methods, etc. It is
the tool to establish truth in mathematics.

Logic has been the foundations of mathematics since its ancient beginnings, but established
itself as a separate domain only in the 19th century. One of the most important contributions
of that time was Begriffslehre (Conceptology, 1879) by Gottlob Frege (1848-1925), which was
devoted to recognising and describing all logical principles of mathematical proofs, with the
ultimate goal of making arithmetic a part of logic. Frege is also credited for the introduction
of the quantifiers V, 3.

Set theory is the science of sets—finite or infinite collections of arbitrary objects called
elements. In its original formulation it was created by the German mathematician Georg
Cantor (1845-1918). An important predecessor to Cantor was the Prague scholar Bernard
Bolzano (1781-1848), the author of Paradoxien des Unendlichen (Paradoxes of the Infinite,
1851). The modern set theory, together with logic, makes it possible to build all other branches
of mathematics essentially “from nothing.”

1.1. Naive set theory

In the paper Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen (On
one property of the set of all real algebraic numbers, 1874), Cantor proves the existence of
infinitely many transcendent numbers (in his time only two transcendent numbers were known,
e and 7). His paper can be considered the founding publication on set theory. However, many
scholars considered it controversial, some even refused to consider it mathematicsﬂ and only
few encountered Cantor’s ideas with enthusiasm?

Cantor uses natural language to define all notions. His work contains no precise definition
of a set. Nevertheless, Cantor elaborated the theory to a considerable depth; focusing on the
notion of cardinality (massiveness, see below) of a set. Today, this informally constructed
theory is called the naive set theory.

However, a paradox emerged once Cantor took the set 9t of all possible cardinalities into
consideration. As it turns out, the set 9 would have an even greater cardinality, one not

I Leopold Kronecker even called Cantor a “corrupter of youth”.

2 David Hilbert, who described Cantor’s work as “the finest product of mathematical genius and one of the
supreme achievements of purely intellectual human activity,” once claimed: “No one shall drive us from the
paradise that Cantor created for us.”
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contained in 9. Two years earlier, in 1887, Cesare Burali-Forti (1861-1931) discovered a
similar paradox in Cantor’s theory of ordinal numbers.

A significant step towards uncovering the nature of the problem was made by Frege. In the
two-volume work Grundgesetze der Arithmetik (1893 and 1903), he introduced the set

My ={X | 6(X)}

of all X, satisfying condition ¢(X). By coincidence, just before the publication of Frege’s
second volume, Bertrand Russell (1872-1970) pointed out a paradox arising in the special case

N={X|X¢&X}.

The Russel’s paradox states that both options N € N and N ¢ N lead to a contradiction.
Indeed, if N € N, then N € N by the definition of N. Conversely, if N ¢ N, then N € N for
the same reason.

Since naive attempts to build a set theory did not lead to success, it was eventually built as
an axiomatic theory. The first such theory was proposed in the beginning of the 20th century
by Ernst Zermelo (1871-1953). Later, Abraham Fraenkel (1891-1965) made several important
corrections, which resulted in what is called the Zermelo—Fraenkel theory. The latter represents
the standard theory of sets today.

1.2. Logical paradoxes

Examples of logical reasoning leading to paradoxical conclusions have been known since
ancient times.

Example. Epimenides’ paradox. Epimenides, himself a Cretan, said that the Cretans lie under all
circumstances. The paradox arises when we try to determine whether Epimenides’ statement is true.
In a modern form, the paradox is contained in the statement: “This statement is false.”

It is easy to spot a logical circle in Epimenides’ paradox because the sentence speaks of
itself.

Example. Barber’s paradox. An army barber was ordered to shave all men who don’t shave
themselves. Should he shave himself? This is how Russell popularised his paradox mentioned above.

Example. Grelling—Nelson’s paradox. Let’s classify adjectives into heterological and homological.
Let an adjective be homological (or self-descriptive), if it has the property it describes (for example,
the adjectives English, existing, polysyllabic, pronounceable, unhyphenated are homological) and het-
erological (or non-self-descriptive) in the opposite case. The paradox becomes apparent if we try to
classify the adjective heterological.

Example. Berry’s paradox. Only a finite number of numbers can be determined in less than thirteen
words. Therefore, there are numbers that cannot be determined in less than thirteen words. However,
every nonempty subset of the set of natural numbers has a least element. Therefore, there is “the
least number that cannot be determined in less than thirteen words.” This is paradoxical because the
number in question is determined by a sentence of twelve words.

The following example shows that a logical paradox can have profound consequences in the
real world, too.
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Example. An arbitrator’s paradox. Two companies entered into a contract in which, among other
things, they empowered an arbitrator to resolve all their possible disputes, instead of going to court.
One of the companies then produced irrefutable evidence that the contract has been void ab initio
(from the outset). If the arbitrator finds that the contract is void, he will lose the right to arbitrate
the dispute. If, on the other hand, he accepts the validity of the contract and decides the dispute,
then he cannot accept the validity of the contract in view of the evidence presented.

Logical paradoxes arise because some statements apply more broadly than originally in-
tended and anticipated, leading to some form of logical circle. In linguistic paradoxes, we also
observe mixing the language we speak about with the language we speak.

2. Axiomatic theory of sets and classes
Within naive set theory, Russel’s paradox arises when we set
N={X|X¢gX}.
In general, we can ask whether the collection of all sets X possessing some property ¢(X),

My ={X [ ¢(X)},

is correctly defined, and if so, whether My is a set. The answer is given by axiomatic set theory.

The first ever Zermelo-Fraenkel theory (ZF for short) blocks Russell’s paradox by allowing
only the notation N = {X € U | X ¢ X}, where U is some (already known) set. In the
framework of ZF, N is not a set, whereas the question of what NV is remains unanswered. Also
the collection of all sets is not a set in ZF'. Neither is the collection of all groups, all topological
spaces and similar structures. However, even such collections can be subject to mathematical
considerations (this happens, in particular, in category theory). It is therefore desirable to give
even these “non-set” collections a place in the constructed theory.

2.1. Classes

By itself, the collection {X | ¢(X)} of all sets X with the property ¢(X) does not lead to
any paradoxes. Only, as we have already seen, it cannot always be a set. A collection like this
one is called a class, and not all classes are sets. For instance, the class of all sets, the class of
all groups and the class of all topological spaces are not sets.

If we axiomatise only sets, there is terra incognita beyond the territory occupied by sets, if
we axiomatise classes, there will be something we can work with. Classes are axiomatised, e.g.,
in the Godel-Bernays—von Neumann and the Kelley-Morse theories. The difference between
these two is that the latter is slightly more daring (as specified below). Kelley published his
theory of classes in an appendix to General Topology in 1957. With insignificant deviations,
we shall construct just the Kelley—Morse theory in what follows.

The purpose of our exposition is to have the reader understand “what one can do with
classes” and “what one can do with sets.”

2.2. Formulas

Formulas allow us to write “meaningful” statements about sets (and classes), i.e., statements
which, in principle, can be true or false.
The language of class theory uses an alphabet consisting of symbols specified as follows:

1. Symbol €, read as “is an element of” or “belongs to.”

3
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Logical operators 1,A,V,=, <.

Quantifiers V, 3.

Brackets (, ).

Symbols of variables and constants, which are upper and lower case letters of the Latin
alphabet, digits 0 to 9, and possibly other symbols and combinations thereof, excluding
the symbols listed in items 1-4.

Ol L

For instance, x, X, y1, Uz can be symbols used to denote classes (including sets). Superfluous
brackets can be omitted. We shall gradually add more symbols, e.g., =, &, N, U, {, }, 0, 0, 1,
2,3, N.

Constants, contrary to variables, have a unique, conventional value. For instance, () (empty
set) will be a constant.

Next, we shall inductively define class theory formulas. All formulas will be non-empty finite
sequences of symbols of the class theory alphabet. Not all sequences will be formulas, because
not all sequences make sense in class theory. For example, the sequence z € y makes sense
(and can be either true or false) and will be a formula, while the sequence 3 €€ V will be not.

We shall also define which variables occurring in a formula are free and which are bound.
Each variable will be either free or bound, not both.

The formulas themselves will be denoted by letters of the Greek alphabet. They will be
defined inductively, using four rules F; to Fy, listed below. A formula will be any sequence of
symbols that results from a finite number of steps, each consisting in the application of any
one of the rules F; through Fy.

F, Each sequence X € Y, where X,Y are variables or constants, is a formula. Each of X,Y
is free, if it is a variable.

A formula introduced by this rule is called an atomic formula. The name reflects the fact that
neither part X, € or Y is a formula. There will be no other atomic formulas.

Fy If ¢ is a formula, then 1(¢) is a formula. The bound and free variables of 7(¢) are the
same as those of ¢.

Example. Formula (X € Y) will be abbreviated as X ¢ Y, which introduces the symbol ¢. If
variables, X,Y remain free. Let us stress that X ¢ Y is not an atomic formula.

F; If ¢ is a formula and =z is its free variable, then (Vx)(¢) and (3z)(¢) are formulas. The
variable z is bound in both formulas (Vz)(¢) and (3z)(¢); the other variables are free or
bound depending on whether they were free or bound in the formula ¢.

Formulas (Vz) and (3x) are read “for every x” and “there exists x,” respectively. The variable
x ceases to be a free variable and becames a bound variable. Rule F3 is called quantification.
It quantifies the variable x.

Every bound variable can be renamed, similarly to summation indices or integration vari-
ables in mathematical analysis.

Example. An example of a formula generated by rule F3 is
(3z) (z € X).

Rule F3 has been applied to the atomic formula z € X, where both variables z, X were free. In the
resulting formula (3z) (z € X), the variable x is bound, while X remains free. The meaning of the
formula (3z) (z € X) is that X is nonempty. Renaming z to y, we get the formula (Jy) (y € X) of the
same meaning.
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2.1. Remarks. 1. Parentheses may be omitted if clarity is not compromised. For example,
rule F3 requires that we write (3z)((3X)(z € X)), but so many brackets do not add to clarity.
The notation (3z)(3X)(z € X) is also clear enough, or even 323X x € X with no parentheses
at all. In this text we will try to keep a reasonable amount of parentheses to achieve good
readability even without introducing explicit rules for reading.

2. It is acceptable to bind variables that do not appear in the formula at all, but such
quantification is unnecessary.

Next we introduce the notion of compatibility. For compatible formulas, every variable can
be either bound or free, but not both.

2.2. Definition. Formulas ¢, are said to be compatible, if each variable that occurs in both
formulas is either bound or free in both formulas.

F4 If ¢, are compatible formulas, then

@AW, (v, (@)= (), (@) < @)

are formulas; they’re called compound formulas. The variable is free or bound in the
compound formula if it is free or bound in at least one of the formulas ¢, .

Example. The formulas ¢ = (3z)z € y and ¢ = x € z are incompatible because z is bound in
the former and free in the latter. The remaining variables y, z occur in only one of the formulas, and
therefore have no effect on compatibility. Consequently,

oAy =(Cr)z ey Nz €2)

is not a formula.

2.3. Proposition. If a variable X occurs in a formula ¢, then it is either free or bound, but
not both.

Proof. The statement holds for atomic formulas, since they contain only free variables. If the
statement is true for a formula ¢, it is also true for ¢, because the free and bound variables
are the same for both. If the statement is true for a formula ¢ with a free variable X, it is also
true for both (Vz)(¢) and (3x)(¢), because the free and bound variables are the same for both,
except for X, which has changed from free to bound. If the statement holds for compatible
formulas ¢, 1, there is no variable that is free in one and bound in the other, and therefore
the statement holds for the compound formulas ¢ A ¥, ¢ VY, ¢ = Y, ¢ < 1.

If two formulas are not compatible, then any common variable that is bound in only one
of the formulas can be renamed, i.e., denoted with a different symbol so that the new symbol
does not appear in the other formula. In this way, compatibility can always be enforced. We
will show later that such renaming does not affect the truth of the formula.

Example. Consider again two incompatible formulas ¢ = (3z)x € y and ¢ = x € z. If we replace
2 with w in the formula ¢ to obtain ¢ = (Ju) u € y, the two formulas are compatible and

oAy =(Fu)uey Alxez2)
is a formula.

For clarity, sometimes a formula symbol is followed by the list of all its free variables enclosed
in parentheses.
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Example. The formula (3z)x € y can be denoted by ¢ or ¢(y), but neither ¢(x,y) nor ¢(y, 2).

2.3. True and false formulas

Let us turn to the question of the truthfulness of formulas. As in the classical logic, two
truth values are possible: 1 (the formula is true, the formula holds) and 0 (the formula is false,
the formula does not hold).

We will decide the truth of formulas based on the truth of their subformulas using rules P,
to P4, corresponding to the rules Fs to Fy for constructing formulas of class theory. The rules
P,, are as follows.

P> The formula ¢ is true if and only if ¢ is false.

P3 The formula (Vz) ¢(z) is true if and only if ¢(x) holds for all z; the formula (Iz) ¢(x) is
true if and only if there exists z such that ¢(z) holds.

P4 The truth of the formulas ¢ A, ¢ Vb, ¢ = 1, ¢ < 1 depends on the truth of the
formulas ¢, according to the well-known rules, given in the following table:

¢ Y| oNY VY d=Y 9

1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 1 1 0
0 0 0 0 1 1

There is no rule P; that would allow to assess the truth of all atomic formulas. If there was
one, we could decide the truth of all possible formulas, and there would be no need to build an
axiomatic theory. Actually, the truth of atomic formulas has to be derived from the axioms.

A formula without free variables has a uniquely determined truth value 1 or 0. A formula
containing free variables has no determined truth value, until the free variables are assigned
values (concrete classes). The truth value of the formula then depends on the values assigned
to the free variables.

2.4. Logical equivalence

Note that ¢ < 1 is true exactly when ¢ and v have have the same truth values. The
formulas ¢ and 1 are then interchangeable in terms of truth and falsity. We say that the
formulas ¢, i are logically equivalent.

We shall not introduce any symbol to denote logical equivalence (to avoid confusing the
language we speak about with the language we speak). In particular, ‘<’ alone does not
denote logical equivalence. To express logical equivalence of ¢ and i, we have to say ‘¢ < ¢
is true’ or ‘¢ < v holds.’

2.5. Inference and truth

We have now gathered the basic requisites for building an axiomatic theory of classes.
Next we shall systematically introduce one axiom after another, simultaneously introducing
important auxiliary concepts. If we were to list all the axioms at once, without the auxiliary
notions, the axioms would be very complicated and completely incomprehensible.

All axioms are considered to be true formulas. Other true formulas (valid propositions) can
be derived from axioms by using the rules P to P4 and standard proving methods, which are
assumed to be well known.
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Example. We have already introduced the symbol ¢ in a preceding example. The formula X € Y
has the same meaning as [(X € Y). Whatever we substitute for X,Y, the formulas X ¢ Y and
1(X €Y) will always have the same truth value. Consequently, X ¢ Y and 1(X € Y) are logically
equivalent.

Let us emphasise that X € Y is not an atomic formula, although, at first glance, it appears
to be. It is just a short notation for the non-atomic formula (X € Y'). The truth value of the
formula X ¢ Y is clearly derivable from the truth value of the atomic formula X € Y. We
introduce other similar short notations below.

2.6. Sets
In Kelly-Morse axiomatic class theory, sets can and will be defined.

2.4. Definition. A class X is a set if (3Y)(X € Y) holds. A class that is not a set is said to
be a proper class.

Otherwise said, a class is a set if and only if it is an element of another class. Proper classes
cannot be elements anywhere.

2.7. Equality of classes

Let’s introduce one more notion and one more symbol. We say that two classes X,Y are
equal and write X =Y if they have the same elements. A formal definition follows.

2.5. Definition. Classes X,Y are equal, if
VUO)(UeXsUcY).

We write X =Y.

In the preceding text we have already used the symbol ‘=’ several times to denote general equality
or identity of formulas or classes. For classes, we have now introduced equality as the condition of
having the same elements, which does not conflict with the earlier usage. For formulas we informally
define equality as identity. Obviously, identical formulas are logically equivalent, but not vice versa.

Let us note that if U is a proper class, then neither U € X nor U € Y holds, so the
equivalence U € X <& U €Y is true for all proper classes U. Hence, it is sufficient to consider
the equivalence U € X < U € Y only assuming U to be a set.

Actually, it will be seen below that “=" is a relation between classes that is reflexive,
symmetric and transitive.

Exercise. Show that
VX)X = X,
VX)VY) (X =Y =Y = X),
VX)VY)VZ2) (X =Y AY =2)= X = 7).
Help: Let us prove the first statement. This is equivalent to
(WVX)(VU) (U € X) & (U € X).

Since (U € X) < (U € X) holds for any truth value of the atomic formula U € X, the first statement
is proved.
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By the definition of equality of classes, X = Y implies U € X & U € Y for each U.
However, it does not follow from anywhere that X =Y also implies X € V < Y € V for every
V. This must be postulated, and of course, it is sufficient to do so for one implication.

A. Axiom of invariance.
VX)VY) VW) (X =Y AX eV)=YeV).
Otherwise said, if X =Y, then X € V implies Y € V.
2.6. Proposition. Let X =Y, let V be an arbitrary class. Then
XeVseYeV
holds. Otherwise said, X € V a'Y € V are true or not simultaneously.
Proof. By the axiom of invariance, X € V implies Y € V and Y € V implies X € V.

2.7. Proposition. Assume X =Y to be two equal classes. Assume Uy, ..., U, to be arbitrary
classes. Then

o(X,Uy,...,U,) & oY, Uy,...,U,)
holds, i.e., (X, U1,...,Uy) a ¢(Y,Us,...,U,) are true or not simultaneously.

We prove the assertion by induction on the length of the formula. The length of a formula
is defined to be the number of symbols in a formula constructed according to the rules F; to
F, including all parentheses. Obviously, atomic formulas are the shortest (each consisting of
three symbols) and each rule Fy to F4 produces formulas longer than the components thereof.
A formal proof follows.

Proof. 1. If ¢(X,U) is the atomic formula U € X, the statement follows from the definition
of equality of classes.

2. If (X, U) is the atomic formula X € U, the statement follows from Proposition

For all other formulas, one proceeds by induction. Assume that the statement holds for all
formulas shorter than ¢(X, Uy, ..., Uy).

3. If the formula ¢(X, Uy, ..., U,) is of the form specified in rule Fo, i.e., 1¢(X, Uy, ..., Upy),
then (X, Un,...,U,) < (Y, Uy,...,U,) holds by induction, since (X, Uy, ..., U,) is shorter
than ¢(X,Uy,...,Uy). But then ¢(X,Uy,...,U,) < ¢(Y,U,...,U,) holds as well.

4. ¢(X,Uy,...,U,) is of the form specified in rule Fs, that is, (VU) ¥ (U, X, Uy, ...,U,) or
@U)y(U, X,Uy,...,Uy), then ¥(U, X, Uy,...,U,) < ¢(U,Y,Us,...,U,) holds by induction,
since ¥(U, X, Uy, ..., U,) is shorter than ¢(X, Uy, ..., U,). Then, however, (X, Uy,...,U,)
o(Y,Un,...,U,) holds as well.

5. If the formula ¢(X,Uq,...,U,) is of the form specified in rule F4, then we proceed
analogously. Complete the details as an exercise.

B,. Specification axioms. Let ¢(z,Us,...,U,) be a formula containing free variables x,
Uy, ..., Uy, let Z be a variable that does not appear in ¢. Then

(YU, ---(VU,)3Z)Vz) (x € Z & (zis aset A p(x,Uq,...,U,)))

is an axiom. Here ‘z is a set * replaces (3Y)(z € Y) (according to Definition [2.4)).
Otherwise said, for every formula ¢ there exists a class Z, the elements of which are precisely
all sets « such that ¢(x,Us,...,U,) holds.
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Axioms B form what is called a scheme of azioms, meaning one axiom for every formula ¢.

The class Z is called the class specified by the formula ¢(x,Uy,...,U,) and is denoted

{z| ¢(z,Us,...,U,)}.

From this immediately follows a rule for deciding the truth of atomic formulas with the right-
hand side Z = {z | ¢(z, Uy, ..., Uy,)}.

P, Let Z ={a | ¢(x,Uy,...,Up)} be the class specified by ¢(x, Uy, ..., U,). Then, for each
set z,
r€Z & ¢(x,Uy,...,Up,).

holds. Otherwise said, if x is a set, then € Z is true if and only if ¢(x,Uy,...,U,) is
true.

The requirement that x is a set is important because it prevents Russell’s paradox to appear.

In the introduction we mentioned two variants of class theory, Gédel-Bernays—von Neumann and
Kelley—Morse. The former admits only sets and the latter admits general classes as variables admitted
in formulas ¢ of the specification scheme. Accordingly, there are more Kelley—Morse classes than there
are Godel-Bernays—von Neumann classes.

2.8. The universal class
We will now introduce the class U by
U={z|xz==x}.

Since & = z is always true (obviously, we could use any universally valid formula), I/ is the
class of all sets. It is also called the universal class or the universe. Thus, x € U means just
that z is a set.

Later we shall show that U/ is a proper class.

2.9. The empty class

The empty class @) is introduced by
D={zel|z+#uz}.

Since x £ does not hold for any set, there is no set that lies in the empty class, which explains
its name.

We could also write ) = {z |  # 2}, which would mean the same by definition. The long
form {x € U | © # x} is a reminder that = needs to be a set. We shall use the long form
henceforth.

2.10. The algebra of classes

The specification scheme makes it possible to introduce operations with classes that are a
direct generalisation of the well-known set operations.

UnV={zecU|zecUANnz eV},

UuV={zeld|zeUVzeV},

U\V={zeclU|lzecUNT(zeV)}
9
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We also have the unary operation of the class complement

U={zeU|I(zel)},

where there is no set analogy because the complement of a set is always a proper class.

Exercise. Show that
unu =10, vup=r0,
ung=0, vuUu=U,
unu =10, vuU =U,
unv=vnu, vuv=Vul,
Unv)nW=Un{Vnw), UTuV)uw =UuU(VUuUWw),
UnVvuw=0uw)n(Vuw), OOuv)nW=UnW)u({Vnw).
Exercise. Show that
Uu=0, 0=u,
Unv)~=U0uUV, UuV)"=UnNnV,
U=uU

Inclusion also has a direct generalisation.

2.8. Definition. We say that class U is subclass of class V' and write U C V, if the formula
VeeUd)(reU=zeV)
holds.

The relation A C B is called inclusion. The sharp inclusion A C B is introduced by the
formula,

ACB& (ACB)A(A+B).

Thus, A C B holds if and only if A C B and A # B hold.
To show that U is a subclass in V| it is sufficient to show that an arbitrary element of U is
also an element of V.

2.9. Proposition. Fvery class is a subclass in U.
Proof. Every set « € U is also an element of U, since all sets are elements of U.

The following exercise shows that C has the properties of an ordering.

Exercise. Let U, V,W be classes. Show that
UCU (reflexivity),
(UCVAVCU)=U=V (antisymetry),

(UCVAVCW)=UCW (transitivity).

10
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Exercise. Let U,V be classes. Show that

UCVesUuV=V, UCVesUNV=U

If U is a class, we introduce the restricted quantifiers (3X € U) and (VX € U) by the
requirement that

FX eU)dp(X,Vh,..., V) & 3X)X e UANX, V1,y..., V),
VX eU)d(X,V1,...,.V) & (VX)X €U = ¢(X,V1,...,Vp)
holds for all formulas ¢(X, Vi,...,Vy,).
If U is a class, we introduce its union | JU and its intersection (YU by
Ju={ecu|@X cl)zec X}
={zcU|BX)(XeUnzecX)},
(U ={xc| (VX eU)z € X}
={zclU| (VX)X eU=ze€X)}

We see that (U contains exactly those x that lie in all sets X € U, while | JU contains exactly
those x that lie in at least one set X € U. Moreover, if for every set X € U there is a set
F(X) € V (anticipating introduction of a mapping F': U — V few pages later), we can define

(| F(X)={Yy eV | (VX e V)Y € F(X)}
XeU

U FX)={y eV |(3X elU)Y € F(X)}.
XeU
For example,
Ur=Ux Nv=Nx
XeU XeU

2.10. Proposition. We have
Yo=0, No=u.

Proof. Concerning the first equality, the inclusion ) C | () is obvious. Let us prove the opposite
inclusion | C 0. Let « € |J0 be arbitrary. Then, by the definition of | J, there is a class X
such that X € ) Az € X. But X € () never holds. This means that no z satisfies z € |J0, i.e.,
Uocao.

Concerning the second equality, the inclusion ()@ C U is obvious, since every class is a
subclass in . To prove the opposite inclusion U C (@, let x € U be arbitrary. Then z is a
set. Now,z € (0 holds if and only if for every class X the implication X € §) = z € X holds.
However, this implication does hold, since the assumption X € (} is never true.

Exercise. Let U C V. Show that

UvclUv, Nvev

11
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Exercise. Let z € X. Show that

xczclx

2.11. The class of all subsets
The class pU of all subsets of a class U is defined by
owU={ZecU|ZCU}

C. Two axioms about subsets.
C, If X isaset and Z C X, then Z is a set.
C, If X is a set, then X is a set.

It can be shown that axioms C;, Cz can be replaced by a single axiom, specified in the following
theorem.

2.11. Proposition. The pair of azioms Ci, Ca is equivalent to
C VX eu3y eu)vz2)(ZzC X =>Ze€Y).
Proof. Let axioms C; and C; hold. Let X be a set. Let Y = pX, which is a set according to Cs.
Each subclass of Z C X is a set under C;. Therefore, Z € pX. This proves formula C.
Let C hold. Let X be a set. By C, there exists a set Y such that the implication Z C X = Z €Y
holds for every class Z. Let us prove Ci. If Z C X, then Z € Y, and hence Z is a set and C; is

proved. Let us prove Cas. It is easy to see that pX C Y, whence pX is a set by C;i. because Y is a
set. This proves Cs.

2.12. Proposition. The universe U is a proper class.

Proof. Assume by contradiction that U/ is a set. By Cy, the subclass N ={X e U | X ¢ X}
is a set, which is a contradiction by Russel’s argument. Thus, i/ is not a set.

2.12. The existence of sets

Note that we have not proved the existence of a set yet. All axioms mentioned so far allow
for the possibility that no class is a set at all, i.e., the possibility that ¢/ = (). In particular,
even ) needs not be a set.

D. Axiom of existence of sets.
0eu,
i.e., the empty class is a set.
Equivalently, it is sufficient to assume the existence of at least one set.
2.13. Proposition. Aziom D and
U0
are equivalent.

12
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Proof. If U is non-empty, then there is at least one set. Denote it by U. Since § C U, () is also
a set according to Cj.

2.14. Proposition.
Au=0, Ju=u

Proof. Concerning the first equality, it is obvious that ) C (U. Let us prove the opposite
inclusion (U C (). Suppose there is an element x € (|U. This implies that x belongs to all
sets contained in U, and therefore it also belongs to the empty set, which is a contradiction.
Thus, no x belongs to (U.

Concerning the second equality, it is obvious that |JU C U. Let us prove the opposite
inclusion U C | JU. Let © € U be an arbitrary set. Then there exists a class X such that X € U
and z € X, for example, X = px. Consequently, z € JU.

2.13. One-element set
If x is a set, define the class {z} by
{a} ={ycU|y=2a}.
Exercise. Decide whether
a)e{0};
b) 0 C {0}

2.15. Proposition. We have
(VzeU){z} elU.

Otherwise said, if x is a set, then {z} is a set.

Proof. Let z be a set. Then = € px because x C . Therefore, {z} C pz, whence {x} is a set
by C; and Cs,.

The set {x} is called the one-element set with the element x.

Exercise. What is {X} if X is a proper class?
We have an infinite sequence of sets 0, {0}, {{0}}, {{{0}}}, {{{{0}}}}, etc.

Exercise. Prove by induction that any two are different.
Except ), so far we have been able to construct only one-element sets.
2.16. Definition. If x, y are different sets, x # y, we introduce the class
{z,y}={ueld|u=zVu=y}
which is called the se two-element set containing elements x,y.
E. The axiom of pair.
Veel) VyeU)Fuecld)Vzel)(zeus (z=aVz2=y))

13
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If x,y are sets, then {z,y} is a set.
F. The axiom of union.

(VS € U) (US eu).
If S is a set, then | J S is a set.

By unifying a set of sets, we always get a set. This, of course, need not be true for union of
a proper class of sets. The analogue for intersections (if S is a set, then () S is a set) follows
from axiom Cj.

Exercise. Let X,Y be sets. Show that
xuy = J{x,v}.
We see that the union of two sets is a set (by the axiom of union).
Obviously, {z,y} = {«} U {y}. If 2, y, z are sets, we can analogously introduce
{z,y,2} ={z,y} u{z} = {a} U{y} U{z}.

And so on.
The reservoir of provably existing sets can be expanded again, for example by

{0,{0}},
{0,{0.{0}}},
{0,{0,{0.{0}}}},

etc. However, they are still sets with finitely many elements.

2.14. Cartesian product

The Cartesian product is another important set construction, that can be extend to classes
without problems.

2.17. Definition. Let a,b be sets, then
la,b] = {{a},{a,b}}
is called the ordered pair [a,b].
2.18. Proposition. If a,b,c,d are sets, then [a,b] = [¢,d] if and only if a =cANb=d.

Proof. By analysing all possible cases, we easily establish that {{a}, {a,b}} = {{c}, {c,d}} if
and only if a = ¢ aand b = d.

The ordered pair [a,b] is uniquely determined by specifying two elements and their order,
unlike the set a, b, which is determined by the two elements regardless of order.

2.19. Definition. Given two classes A, B, we define the class
AxB={zxelU|(Jac A)(Fbe B)x = [a,b]}

of all ordered pairs [a, b] of elements of classes a € A, b € B. We call it the Cartesian product
of the classes A, B.

It is also common to write

A x B={[a,b] |a € A,be B}.

14
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Example. {Q, 0} x {4, &} ={[C &, [0 &] [0, b] [O,&]}.
Exercise. 1. Let A, B be arbitrary classes, let A’ C A, B’ C B be subclasses. Show that
A'x B =(Ax B)n (A x B).
2. Let A, B be arbitrary classes, let A’, A” be subclasses in A. Show that
(AANA"YxB=(A"xB)n(A" x B),
(AuA”YxB=(A"xB)uU(A" x B)
(distributive laws). 3. Let U be a class. Show that
Ax |Jx=JMUxX), Ax [ X=[)AxX)
XeU Xeu XeU XeU

(distributive laws for systems of sets).

2.20. Remark. We introduced the ordered pair [a,b] as the set {{a},{a,b}} as a part of our effort
to present all mathematics in terms of sets and classes. This has some unwanted consequences. In
particular, ordered pairs can be used as arguments of common set operations, such as intersection and
union. However, doing so is not always reasonable. Usually, the results of set operations with ordered
pairs have no practical meaning.

Example. Here are some examples of “nonsensical” set operations mentioned in the last remark
(a, b, c are pairwise different elements).

L [a,b] N [a,c] = {{a}, {a,b}} N {{a},{a,c}} = {a}.

2. [a, ] N[b,c] = {{a},{a,c}} N {{b}, {b,c}} = 0.

3. Nla, b = N{{a},{a,b}} = {a} N{a,b} = {a}.

Exercise. Let A,U be arbitrary classes. Show that, in general,

Ax (U # (A xD),
Ax|Ju #JAxv),

i.e., this is not the right way of writing the distributive law for systems of sets.

Later we shall prove that the Cartesian product of sets is a set, but we cannot do it without
another axiom.

2.15. Relations and mappings

Relations and mappings between classes are defined in the same way as between ordinary
sets. For completeness, we give all basic definitions and propositions below, leaving proofs as
exercises.

2.21. Definition. Let A, B be arbitrary classes. A relation (correspondence) between classes
A, B is a subclass of the Cartesian product A x B. If p C A x B is a relation and if a € A,
b € B are sets such that [a,b] € p, then a is said to be in relation p with b, which we write as
a p b. Relation on a class A is the special case when A = B.

Examples. 1. The empty set ) C A x B is a relation between classes A, B. No two elements a € A,
b € B are in this relation.

2. The whole class A x B is also a relation between classes A, B. Every two elements of a € A,
b € B are in this relation.

3. Identical relation on a class A is the subclass ida = {[a,a] | a € A}. Elements a,b € A are in
this relation if and only if a = b.

15
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2.22. Definition. If p is a relation between classes A, B, then the relation p~! C B x A
between classes B, A defined by

p~ti={lballapb}

is said to be inverse to relation p.

Remember: a pb < bp~t a.
2.23. Definition. Let p be a relation between classes A, B, let o be a relation between classes
B, C. The relation o o p (read ,,0 after p“) between classes A, C' defined by

cop={(a,c)| (e B)apbAbaoc)},

is called the composition of relations p and o.

Exercise. Let p be a relation between classes A, B. Then
1. poida = p;
2. idgop=p.

Let, moreover, o be a relation between classes B, C'. Then
3. (cop) ™t =p7t !

oo .

Exercise. 1. Show that (p™')~! = p.
2. Assuming p C p’, 0 C ¢/, show that poo C p' oo’.

2.16. Mappings
A mapping is a special case of relation between classes A, B.

Definition. A relation f between classes A, B is called a mapping (or a map) from class A
into class B and denoted f C A x B, if for every element a € A there is exactly one element
b € B such that [a,b] € f holds.

Intuitively, to each element of class A we assign exactly one “value” from class B. The
element b is then usually denoted by f(a), sometimes also by f,, and called the wvalue of
mapping f at the element a or the image of the element a under the mapping f.

By writing f : A — B we express that f is a mapping from class A to class B. Another
possible notation is A L, B. Instead of b = f(a) we can also write f:a+—bora L5 b. The
classes A and B are called the domain and the codomain, respectively.

Introducing a special quantifier 3! with the meaning “there is exactly one,” the condition
of f being a mapping can be written as

(Va € A)(3'b € B) [a,b] € f.

“There is exactly one” means “there is at least one, and if there are two, then they are equal,”
or
FzeX)o(z) & (Fx e X)d(x) A ((Vx € X)(V2' € X) (¢(z) A ¢p(2)) = 2 = 2').

Example. The identical relation on a class A is a mapping and is called identical mapping and is
denoted by ida : A — A. We have ida(a) = a for every a € A.

If A C X is a subclass, then t4 = {(a,a) | a € A} is a mapping that to every element a € A assigns
the same element a € X: tax(a) = a. It is called the inclusion mapping.
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Exercise. Let f: AB, g: BC be two maps. Then the mapping go f : A — C defined by
(Va € A) (go f)a) = g(f(a)).

is called the composition of mappings f,g.

Exercise. (1) Let f: A — B ba a mapping. Then
foida =idpof = f.

(2) Let f: A— B,g: B— C, h:C — D be mappings. Then

ho(gof)=(hog)of.

As follows from (2), notation h o g o f is unambiguous even with omitted parentheses.

If a relation f C A x B is a mapping f : A — B, then it does not necessarily mean that
the opposite relation f~! is a mapping as well. If an element b € B is the image of an element
a € A, then the element a is called a preimage of the element b under the mapping f. The
class of all preimages of element b € B under mapping f is denoted by f~1{b}. That is,

fla)=bsac f{b}.

While the image of a general element a € A always exists and is unique, the preimage of an
element b € B may not exist in general and may not be unique.
Given a subclass B’ C B, we define

f'B'={ac A| f(a) € B'}.
A special case is f~1{b} from the previous paragraph.

2.24. Remark. Let us emphasise that the preimage f~1{b} of an element b can be a proper
class. Let us give an example. If we assign to each set an empty set, we get a constant mapping
U — {0} and the preimage of the element @) is the whole class U.

However, if preimages are not sets, then they cannot form a class. This is an annoying
limitation because, intuitively, the collection of all preimages exists and sometimes we need to
work with it. This is a weakness of our axiomatisation.

Exercise. Show that for f C A x B and B’, B” C B we have
f—l(B/ m B//) — f—lB/ m f_lB//7
ffl(B/ U B//) _ fle/ U f—lB//.

2.25. Definition. A mapping f : A — B is called surjective (a surjection) or mapping onto
the class B, if every element of b € B has at least one preimage in A:

(Vb€ B)(Ja € A)b = f(a).

A mapping f: A — B is called injective (injection) or one-to-one if each element of b € B has
at most one preimage in A:

(Va € A)(Va' € A) (f(a) = f(d') = a=d).
A mapping f : A — B is called bijective (bijection), if it is both surjective and injective.
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Exercise. Let f: A — B be a mapping. Prove that the following conditions are equivalent:
(1) The mapping f is bijectvive.
(2) There exists a mapping g : B — A such that

go f=ida, fog=idg.

(3) The inverse relation f~' C B x A is a mapping.
The mapping g satisfying conditions (2) is bijective as well and coincides with the relation f~* of (3).

The mapping g = f~! from the previous statement is called inverse to f. It can be defined by
f7Hb) =as b= f(a)
Exercise. Let f: A — B, g: B — C be bijections. Prove that (go f)™' = f~tog™'.

Exercise. Let f: A— B, g: B — C be two mappings. Prove the following statements.
(1) If the mapping g o f is injective, then so is the mapping f.
(2) If the mapping g o f is surjective, then so is the mapping g.
(3) If the mapping g o f is bijective, then so are both mappings f and g.

Exercise. Let f: A — B, g: A — B be two mappings. Prove the following statements.

(1) If h : B — C is an injective mapping such that ho f = ho g, then f = g. In other words, an
injective mapping can be cancelled from the left.

(2) If h : D — A is a surjective mapping such that f o h = go h, then f = g. In other words, a
surjective mapping can be cancelled from the right.

Example. Let A C X be a subclass, ta = {(a,a) | a € A} the corresponding inclusion mapping.
If f: X — Y is a mapping, then the composition fotax is a mapping A — Y, which is called the
restriction of the mapping f to a subset of A and is denoted by f|a:

fla: A2 x Ly

Note that the contraction is given by the same formula a — f(a) as f.
If the set Y is contained in another set Z, then there is a composition tyz o f : X — Z. In this
case, we say that f arises by extension of the codomain, but there is no special notation for it.

Let f: X — Y be a mapping, let A C X be a subclass. Define

fA={yeY[@Eae A)y=fla)},

which is often abbreviated as

fA={f(a)|a€ A}.
The class fA is called the image of the subclass A C X under the mapping f.

Exercises. 1. Show that t4x is injective.

2. Let f: X — Y be a map. Show that f : X — fX, z + f(z), is a surjective mapping and
f=txyof.

3. Show that every mapping f can be decomposed as g o h, where g is injective and h is surjective.

Exercise. Show that in those cases when all preimages under a mapping f : A — B are sets and
form a class, then there is a bijection between it and the class fA.

If A is a set, we would expect fA to be a set as well, but in fact this requires a special
axiom.

G. Axiom of substitution. If f: X — Y is a mapping and X is a set, then fX is a set.

18
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In Zermelo—Fraenkel’s axiomatisation, this axiom is actually a schema of axioms that uses substi-
tutions, hence the name.

Example. Let U; denote the class of all one-element sets, which we define as sets of the form {a},
where a is a set.

Let us show that U is a proper class. Consider the mapping s : U — U1, a — {a}. The mapping
s is obviously surjective and injective (why?), i.e., a bijection. Therefore there is an inverse mapping
t:U1 — U, {a} — a, which is also a bijection. If /1 were a set, then necessarily U = tU1 would be
also a set, which we know is not.

2.26. Definition. Let I be a set and F' : I — U a mapping which to each element of ¢ €
assigns a set F; € U. In general, such a mapping F' : I — U is called a system of sets.
(Alternatively one can write {F;}icr.) We define

Ur=UFElieny=JFI,

icl

(Fi=({FEliel}=()FI

i€l

The axiom of substitution together with the axiom of union yields the following proposition.
2.27. Proposition. Let I be a set and F : I — U a mapping. Then
U#
il
s a set.

Proof. The class |J FI is a set according to the axiom of union, because FI is a set of sets
under the substitution axiom.

Now we can prove that the Cartesian product of two sets is a set.
2.28. Proposition. Let A, B be sets. Then A x B is a set.
Proof. We have

AxB=Ax | J{} =] Ax b},

beB beB

where A x {b} are sets according to the axiom of substitution because A x {b} is the image of
the set A under the mapping a — [a, b].

2.29. Definition. Let f: X — Y and g : Y — X be mappings. If
go f=idx,

then we say that the mapping ¢ is a left inverse of the mapping f. If
fog=idy,

then we say that the mapping g is a right inverse of of the mapping f.

2.30. Proposition. Let f : A — B be an injective mapping of sets, where A # (). Then f has
a left inverse.
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Proof. Since A is nonempty, there exists an element ¢ € A. Let us construct g : B — A. If
b € fA, then it has exactly one preimage, say a, in which case we set g(b) = a. If, on the other
hand, b ¢ fA, then we put g(b) = c.

Let us show that go f =id 4. For arbitrary a € A we have (go f)(a) = g(f(a)) = g(b) = q,
which proves that go f =id 4.

Exercise. Is the assumption A # ) necessary?

The dual statement that each surjective mapping has a right inverse does not follow from
the axioms presented so far. Recall the usual proof in the framework of naive set theory. Let
f: X — Y be a surjective map. Then every element y € Y has at least one preimage x € X
such that f(x) = y. For each y € Y, let us choose one of the preimages and denote it by g(y).
We get the mapping g : Y — X. The construction implies that fog=idy.

Remember that so far we can construct classes only by specification, that is, by some formula
defining the class, i.e., by an unambiguous prescription. However, we have not constructed the
subclass ¢ C Y x X by an explicit prescription. Instead, for each y € Y we arbitrarily chose
one element from the non-empty set f~!{y}.

AC. Axiom of choice. If X is a set of nonempty sets, then there exists a mapping 7 : X —
J X such that (Vo € X)7(z) € x.

The mapping 7 is called the selection mapping because it selects one element from each set
zeX.

2.31. Proposition. Every surjective mapping f : A — B has a right inversion.

Proof. Let f : A — B be surjective. Then {f~'{y} | y € Y} is a system of nonempty sets.
By the axiom of choice, there is a selection mapping 7 satisfying 7(f~1{y}) € f~'{y}. Now it
is sufficient to put g(y) = 7(f~{y}) for g(y) € f~{y} to hold. Then f o g = idy.

The axiom of choice has been used unconsciously for centuries until it was “discovered” in
1904 by Ernst Zermelo (1871-1953). The axiom of choice allows for non-constructive proofs
of existence, that is, proofs that provide no prescription for the construction of the object
whose existence is being proved. A typical case is Brouwer’s fixed point theorem (any contin-
uous mapping of the unit disc into itself has a fixed point). There was initially some distrust
associated with the use of the axiom of choice, because it implied some rather paradoxical re-
sults, such as the Banach—Tarski theorem, according to which a unit ball in three-dimensional
Euclidean space can be decomposed into a finite number of parts (five), from which two unit
balls can be assembled using only rotations and translations (the parts are unmeasurable and
therefore this is not a contradiction).

Nowadays, almost no one would question the axiom of choice. However, the arbitrariness
associated with choice mapping causes “constructions” using the axiom of choice to be am-
biguous and unrepeatable. We give some convincing examples in the next section (§ .
It is therefore interesting to see which statements are equivalent to the axiom of choice. The
existence of a right inverse to every surjection is a case in point.

2.32. Proposition. The existence of a right inverse to every surjection between sets implies
the axiom of choice.

Proof. Let X be a set of nonempty sets. Then X x |J X is a set and the subclass
E:{[m,a]éXxUX’aem}
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of all pairs [z, a] such that a € z € X is also a set. Consider mappings
pr:E— X, [z,0— =z,
po: E— X, [r,a]— a.
The mapping p; je surjective, because every set x € X is nonempty by assumption.
Let ¢ : X — FE be the right inverse of p;. Then p;i(g(x)) = z for all z € X and ¢(x) =

[z,p2(q(x))] € E, whereupon py(q(x)) € = for each x € X. We see that ps o ¢ is the selection
map sought.

A selection mapping for a finite number of objects exists even without the axiom of choice.
For example, for one nonempty set = containing the element ¢, the selection mapping is {[z, ] }.

Bertrand Russel popularised the axiom of choice by saying that the axiom is necessary when
selecting a set from an infinite collection of socks, but it is not necessary when selecting a set from an
infinite collection of shoes. Indeed, shoes being left and right, one can always select the left one (or
the right one) from a pair, while with socks there is no way to say which is which.

2.33. Definition. Let {F;};c; be a system of sets. The Cartesian product of the system is
{F;}ier is defined to be

HFi:{f:I%UFi

i€l i€l

The elements of the Cartesian product are called I-tuples. A convenient notation for them is
[filicr, where f; € F;.

2.34. Proposition. The axiom of choice is equivalent with the statement that the Cartesian
product of a nonempty set of sets is nonempty.

Proof. An element of the Cartesian product element is the same thing as a selection mapping.

In class theory one can formulate axioms stronger than the axiom of choice for sets. We list
two, but we will not use them.

Axiom of global choice. Let T'= U \ {#} be the class of all non-empty sets. Then there exists a
mapping 7 : T'— U such that (Vz € T) 7(z) € .

The global axiom of choice says that g selection mapping exists even for proper classes of non-empty
sets. It says nothing new about sets, only about proper classes.

The axiom of global choice implies that even the Cartesian product of a proper class of nonempty
sets is non-empty.

Axiom of limitation of size. For every proper class C' there exists a bijection C' — U.

The axiom of limitation of size says that all proper classes are “the same” in that in the sense that
any statement about one of them can be transferred to any other. Although its formulation is very
daring, it does not contradict the other axioms.

2.17. Equivalence relation

2.35. Definition. Let p C A X A be a relation on a class A. The relation p is called
— reflexive, if a p a for all a € A plati ;

- symmetric, if a p b =0 p a;

— transitive, if (apbAbpc)=apec.
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Examples. 1. Every identical relation id 4 is reflexive, symmetric and transitive.
2. Relation “€” on the universal class U/ is neither reflexive, nor symmetric, nor transitive. 3.
Relation “C” on the universal class U is reflexive and transitive, but not symmetric.

Exercise. We can draw the graph of a relation on a set by representing the elements of the set A
by points in the plane and drawing an arrow between two elements if they are in a relation. How to
tell whether the relation represented by the graph is reflexive, symmetric, transitive?

Exercise. Find an error in the following “proof” of the false claim that every symmetric and
transitive relation p is reflexive: “If a p b, then b p a by symmetry, and a p a by transitivity.”

2.36. Definition. A reflexive, symmetric and transitive relation on a class is called an equiv-
alence relation (or simply equivalence if it cannot be confused with the logical equivalence).

Examples. 1. The identical relation id4 is an equivalence on the class A.
2. On the universal class U we can introduce the equivalence relation ~ by the following rule:
A ~ B if and only if there exists a bijection A — B.

2.37. Definition. Let p be an equivalence on a class A. For a € A, denote
lal, ={z € Alapuz}.

The class [a], is called the equivalence class with respect to the equivalence p.

2.38. Proposition. Let p be an equivalence on a class A. For any a € A the statements
a € la],,
apbslal, = (b,
[al, N (B, # 0 = [a], = [b],.

hold.

2.39. Definition. For every a € A, let the class [a], be a set. The class
Alp={BeU|(Baec A)B=a,} ={la], | a € A}

is called the partition or the quotient of the class A by the equivalence p.

Thus, an equivalence induces a partition only if each equivalence class is a set. When this
is the case, then a — [a], is a mapping A — A/p and

U la], = A.

If A is a set, then every equivalence p on A induces a partition. Moreover, A/p is a set as
well, because A/p is the image of the set A under A — U, a — [a,.

Exercise. Find all partitions of the set A = {1,2,3} (there are five of them).

Exercise. Let p be an equivalence on a class A, let o0 be an equivalence on a class B. Define the
relation v = p X o on the class C = A x B by

(a1,b1) v (az,b2) < (a1 p az) A (b1 o ba).

Show that v is an equivalence relation. Show that the equivalence classes of v are just the classes
U x V, where U is an equivalence class of p and V' is an equivalence class of o.
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According to the axiom of choice, a set can be formed by selecting one element from each
equivalence class. The selected element is called a representative of the equivalence class. Any
element can be chosen as a representative of the equivalence class it belongs to. However, when
speaking about representatives, we assume that no two of them belong to one and the same
equivalence class.

Examples. 1. In this example we use the sets R and Q of real and rational numbers, respectively.
Everything you need to know about them you have learned in mathematical analysis. On the set R
we introduce the relation ~g by

r~yey—zeQ.

It is easy to see that ~q is an equivalence relation on R. By the axiom of choice, there is a set U C R
that has exactly one common element with every equivalence class [z] (omitting the subscript ~.
Otherwise said, U consists of representatives of the equivalence classes. Then, for every x € R there
is a unique decomposition x = u + g such that v € U and ¢ € R. This yields a bijection between R
and the Cartesian product U x Q.

2. Choosing an arbitrarily small interval [a,b] C R, b > a, observe that every equivalence class can
be assigned a representative belonging to [a, b] by applying an appropriate rational shift. Therefore, it
can be assumed that U C [a, b] with no loss in generality. In this case, U is called a Vitali set. Giuseppe
Vitali (1875-1932) employed this set in his proof of existence of Lebesgue unmeasurable sets.

Assume U C [a,b] to be measurable. Let, furthermore, Q. = {§ € Q| —¢ < ¢ < c} =QN[—c¢,(].
Consider the set

U+Q.={u+qlucUnqgeQ.}.
Let us prove that
[a,b] CU 4+ Qp_q C [2a — b, 2b — a).

The second inclusion being obvious, we prove the first one. Let r € [a, b] and let u be the representative
of [r]. Then r — u is a rational number from the interval [a — b, b — a], which means that r — u belongs
to Qb—a-

Then, by properties of the Lebesgue measure,

b—a=4{(a,b]) < LU+ Qp—a) < €([2a —b,2b—a]) =3b— 3a

whereas

W)= U W)= ¥ wra= ¥ «w)

q€Qp—q q€Qp—q q€Qp—q

is an infinite sum of constants £(U). The sum is either zero if £(U) = 0 or infinity if £(U) > 0, but in
neither case it lies between b — a and 3b — 3a, which is a contradiction.

2.18. Von Neumann’s construction of natural numbers

The axioms presented so far are not strong enough to prove the existence of an infinite set,
such as the set of all natural numbers. Moreover, if our goal is to build mathematics “from
nothing,” we should construct the natural numbers using only tools provided by the set theory.
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Von Neumann proposed to define a natural number as the set of all preceding natural
numbers. Starting from 0 = (), we get successively

0=0,

1= {0} = {0}

2={0,1} = {0,{0}}

3={0,1,2} = {0,{0},{0.{0}}}

4=10,1,2,3} = {0, {0}, {0, {0}}, {0, {0}, {0, {0} } }}
etc. We see that 1 =0U {0}, 2=1U{1}, 3=2U{2}, etc.

2.40. Definition. A set N is said to be inductive, if
(i) 0 e N;
(ii) n € N implies nU {n} € N.

Accordingly,

I={NcU|BeN)A(Wn)(nec N=nU{n}cN)}
is the class of all inductive sets.
H. Axiom of infinity.

Z#0
(the class of all inductive sets is not empty) i.e,

AN eU)(Pe N)A(Wn)(ne N=nU{n} e N))
(there exists an inductive set).

The set of natural numbers, denoted by N, is defined as the intersection of all inductive
sets. Thus,

N=[\N=()T
NeT

which is a set because N is a subclass of at least one inductive set N that exists according to
the axiom of infinity.

We have listed the first few natural numbers above, others can easily be supplied. If n is a
natural number, then nU {n} is called the successor of n and is denoted by on or n+1 or n®.

2.19. The principle of mathematical induction

The principle of mathematical induction allows us to prove statements that depend on a
natural number, i.e., assertions of the form

(Vn € N) ¢(n).

2.41. Proposition. Let K C N be a set such that 0 € K and the implicationn € K = n+1 €
K hold. Then K = N.

Proof. Since K is inductive, K contains the intersection of all inductive sets, i.e., N C K.
Since K C N by assumption, we have K = N.
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2.42. Corollary. Let ¢(n) be a formula such that ¢(0) holds and the implication ¢(n) =
d(n+ 1) holds as well. Then ¢(n) holds for all n € N.

Proof. Put K = {n € N| ¢(n)}.

The principle of mathematical induction also makes it possible to construct sets or even
classes X, dependent on a natural number n. To do this, it is sufficient to prove formulas of
the form

(Vn € N)(3X,,) ¢(n, X,).

In this case we say that classes X,, are defined recursively.

Example. The muddy children puzzle. Imagine a community of logically thinking children. The
guardian tells them that at least one of them has a muddy face. Every child can look around and
see all other children’s faces, but no child can determine the state of its own face itself (there are no
mirrors and children are not allowed to speak). Once in a while, the guardian asks children to step
forward if they know for sure that their own face is muddy. Can the children determine the state of
their face under such circumstances?

2.20. The Peano axioms

Peano’s axioms provide the basis for deriving the properties of natural numbers. They are
named after Giuseppe Peano (1858-1932).

2.43. Definition. A set N, a mapping o : N — N and an element 0 € N are said to satisfy
Peano’s axioms if

1. There is no m € N such that om =0
2. The mapping o : N — N is injective.
3. If AC N satisfies0 € Aand a € A = oga € A, then A = N.

In this section we show that natural numbers and ca = a U {a} satisfy Peano’s axioms. Let
us emphasise that by natural numbers we always mean von Neumann natural numbers.

Proof of the first Peano axiom is easy. Consider the equality m U {m} = (. The left-hand
side contains m as an element, but the right-hand side does not.

The third Peano axiom is the principle of mathematical induction and holds for natural
numbers in direct consequence of Proposition [2.41

Before proving the second Peano axiom, we establish another remarkable property of natural
numbers.

2.44. Definition. A set A is said to be transitive if every element a € A is also a subset of A:

(Va € A)(a C A).

2.45. Proposition. Fvery natural number is transitive.

Proof. Let S C N be the set of all transitive elements of N. Let us prove that S = N by
induction. The initial step: ) € S because () has no elements.

The induction step: Assume n to be transitive and show that on = nU{n} is also transitive.
Let m be an arbitrary element of n U {n}. Then either m € n or m = n. If m € n, then
m Cn C nU{n} by transitivity. If m = n, then m =n C nU {n} obviously.
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To simplify the proof of the second Peano axiom, we introduce yet another axiom now. We
call it an auxiliary axiom, since we shall replace it by a stronger axiom later.

Auxiliary axiom. No set is a subset of its own element, i.e.,
VX eU)(Vz e X) (X C x).

Without this axiom, there can be vicious circles in the determination of sets by their ele-
ments. For if a set M is a subset of its own element m € M, then m € M C m, whence m € m.
However, if sets are determined by their elements, then m takes part in its own determination.
To understand why this might be a problem, consider two sets m,n such that m = {m} and
n = {n}. Then we cannot determine whether m = n until we know whether m = n.

Needless to say, there is no known example of a set m satisfying m = {m}, except anomalies
like m = {{{---}}} (infinitely many nested brackets with nothing but brackets inside).

2.46. Lemma. Let m,n be two sets, at least one of them transitive. Then n € m and m € n
cannot hold simultaneously.

Proof. Let n € m and m € n and, say, n be transitive. Then m C n by the transitivity of n,
which contradicts the auxiliary axiom in view of n € m .

2.47. Proposition. Let m,n € N satisfy on = om. Then n = m.

Proof. Assume that n U {n} = m U {m}. The left-hand side contains n as an element and
this must be also true for the right-hand side. Hence, n € m or n = m. The right-hand side
contains m as an element and this must be also true for the left-hand side. Hence, m € n or
m = n. By the preceding lemma, we cannot have both n € m and m € n. Hence n = m.

This finishes the proof of the Peano axioms.

2.21. The arithmetic of natural numbers

In this section we shall introduce addition and multiplication of natural numbers and prove
their algebraic properties. A mapping N x N — N is called a binary operation on the set N.

2.48. Proposition. There exists exactly one mapping N x N £ N satisfying
n+0=n, n+om=oc(n+m),

exactly one mapping N x N — N satisfying
n-0=0, n-om=n+(n-m)

and exactly one mapping N x N N satisfying

n0=1, n"om=n-(n"m).

Proof. For every n € N, we define the mapping «,, : N — N by the recursive formula
an(0)=n, aplom)=oca,(m),
the mapping 5, : N — N by the recursive formula
Bn(0) =0,  Bnlom) = an(Bn(m))
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and the mapping v, : N — N by the recursive formula

’Yn(o) =1, 7n(0m) = ﬁn(’yn(m))

In this way, mappings «.,, 5, and =, are correctly defined on the whole N. According to
Proposition and the first two Peano axioms they are defined uniquely. We set n +m =
an(m), n-m = B,(m), nm = ,(m).

Now on = n + 1 since
0+ 1= an(1) = an(00) = 50 (0) = o,

The binary operations +, -, " just defined have all expected properties of the addition,
multiplication and exponentiation operations of natural numbers. In particular, the following
formulas of natural number arithmetic apply (we turn to the usual notation a® for exponenti-
ation a’b).

a+0=a, a-1=a,
at+b=>b+a, a-b=b-a,
a+(b+c)=(a+0b) +e, a-(b-c)=1(a-b)-c,
a-(b+c)=(a-b)+(a-c), a*T¢=a’ a°,
(a-b)® =a®- 0", (
a® =1, at=a 1% =1.
Proofs go by induction.
We also have the cancellation laws
a+c=b+c=a=b,
c#OANa-c=b-c=>a=),
c#O0Na“=0b"=a=0b,
c£0Nc# 1IN = =a=h.
2.49. Remark. Let us emphasise that
0°=1
whereas 0% = 0 does not hold for a = 0. This simplifies many formulas. For example, one can

write

n
anx™ + -+ a1x+ag = E apz"
0

for all z, including = = 0, if and only if 00 = 1.
For indeterminate forms 0° see Remark 2.50] below.

2.22. Integer, rational, real and complex numbers

Now we introduce the sets of integer, rational, real and complex numbers. It will be clear
from the construction that each forms a set. No detailed exposition arithmetic operations will
be provided; they are introduced in a familiar way.
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Well known is the construction of the set of integers as consisting of the pairs [+, n], where
n € N, and the pairs [—, n], where n € N\ {0} (+ and — are symbols different from the symbols
denoting natural numbers). Otherwise said, Z can be defined as the union ({+} x N) U ({—} x
(N'\ {0})). Obviously, Z is a set.

Alternatively, Z can be introduced as ({+, —} x N)/p, where p is the equivalence relation
whose unique class containing more than one element is {[+, 0], [—, 0]} (we identify +0 and
—0).

Construction of rational numbers as pairs p/q of incommensurable numbers, where p € Z
and ¢ € N\ {0}, is also well known. Thus, the class Q of rational numbers can be constructed as
the factor set of the product Zx (N\{0}) under the equivalence [p1, ¢1] p [p2, ¢2] < P1g2 = p2q:1.
Obviously, Q is a set.

The construction of real numbers as Dedekind cuts is standard. Here we give a different
definition using binary expansions. Namely, a real number

a=0,a1aza3...= E a; 27"
ieN

from the interval I = [0, 1) can be identified with a mapping N — {0,1} = 2, and is therefore
an element of the set 2N of all mappings N — 2. However, since

0,111...=1,000...,
0,0111...=0,1000...

etc., one must eliminate sequences that starting at some point consist of only 1s; these will be
called redundant sequences. Every sequence 0,a; ...a,0111... can be replaced by the sequence
0,a1 ...a,1000..., which, starting from the same point, consists of 0s. The 0 immediately
preceding the 1s turns into one 1 immediately preceding the 0s. Thus, the semi-closed interval
I can be identified with a subset of the set 2V, from which we omit the redundant sequences
in the above sense. The set of real numbers is then identifiable with the product Z x I.

2.50. Remark. In mathematical analysis, 0° is considered an indeterminate form. However,
it only means that the limit of type 0" can take arbitrary values, that is, if lim,_.. f(x) = 0
and lim,_,. g(x) = 0, then the limit

lim f(z)?®
Tr—cC
depends on the choice of the functions f(x) a g(z).

This in no way conflicts with the identification 0° = 1 made above. However, this does
mean that the function 0% is discontinuous at zero (whereas x° is continuous at zero and both
cannot be continuous at zero at the same time).

However, the above said does not prevent other authors from always considering 0° as an

indeterminate form. This is fine, as long as necessary precautions are obeyed, one example of
which we pointed out in Remark

Concerning the complex numbers, the identification C 3 z 4 iy <= [z,y] € R x R does the
work.
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3. Cardinalities

A very important equivalence relation is when A ~ B if and only if there is a bijection
A — B. This is sufficiently reasonable only for sets. Finite sets are equivalent if and only if
they have the same number of elements (a form of the pidgeon-hole principle). Equivalence is
a generalisation to general sets of the “equality of the number of elements.”

Exercise. Show that the relation ~ just defined is reflexive, symmetric and transitive.

Exercise. Show that A x A ~ A? for any set A, where A? is the set of all mappings from the
two-element set 2 = {0,1} to A.

A very important example of equivalence is provided by the following proposition.

3.1. Proposition. If X is a set, then
pX ~ 2%,

i.e., there is a bijection between the set pX of all subsets in X and the set of all mappings
from X to the two-element set 2 = {0,1}.

Proof. Consider the mapping X — 2% that assigns to a subset A C X the mapping
fa: X — 2% defined by the rule

|1, ifxeA,
”@ﬂ_{m if v ¢ A.

This is a bijection with the inverse 2%X — X defined as the mapping which to a mapping
f: X — 2% assigns the preimage f~1{1}.

Equivalent sets are said to have the same cardinality. We shall postulate the existence of a
class C and a surjective mapping # : U — C satisfying

#A=#B & A~ B.

Elements of C will be called cardinal numbers and particular symbols of constants will be
assigned to some of them.

It would be natural to define cardinalities as representatives of the equivalence classes U/~ with
respect to the equivalence ~. However, the equivalence classes are proper classes in general, and cannot
form a class the cardinalities could be elements of.

We had to postulate the existence of the class C of cardinal numbers since we cannot define it yet.
This shortcoming will be corrected later. It will be proved later that cardinal numbers form a proper
class.

For each n € N, sets of n elements are the sets equivalent to the set n = {0,...,n — 1}.
We call them also n-element sets. The class of n-element sets will be denoted by U,,. For the
corresponding cardinal number we simply choose n € N, that is, #n = n. The set N can be
identified with the set of finite cardinal numbers. Cardinal numbers not in N will be called
infinite cardinal numbers.

Sets in

U
neN
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are called finite sets.

The sets equivalent to the set N are called countable sets. The corresponding cardinal number
is called countable and denoted by Rg (N is the first letter of of the Hebrew alphabet and reads
aleph). Thus, we have #N = Xy. We shall see infinitely moany alephs later (a proper class of
them). Each infinite cardinal number will be some aleph.

Example. You have already been introduced to countable sets in the lecture on mathematical
analysis. You should be able to verify that

N~Z, N~NxN, N~Q

(by finding the appropriate bijections). Hint: Arrange the numbers in a sequence.
The result shows that #Z = #(N x N) = #Q = N,.

3.1. The arithmetic of cardinal numbers

Now, we shall introduce addition, multiplication and exponentiation of cardinal numbers,
which will be a generalisation of of similar arithmetic operations with natural numbers. To
add cardinal numbers, we need to introduce a disjoint union of sets.

3.2. Definition. Let A, B be two sets. The set ({0} x A) U ({1} x B) is called the disjoint
union of the sets A, B and is denoted by A Ll B.

It is easily seen that the sets {0} x A and {1} x B have no common elements (why?), which
is the point of this construction. Later we shall generalise it to systems of sets.

3.3. Proposition. Let A, B be two disjoint sets. Then AUB ~ AU B.
Proof. Define the mapping h: AUB — AU B by

~_[]0,z], kdyzzc A,
h(z) = { [1,2], kdyzz € B.

As an exercise, show that h is a bijection.

3.4. Proposition. Let A ~ A’ be two equivalent sets and B ~ B’ two other equivalent sets.
Then
1° AuB~ A UB,

2° AxB~A x B,
32 BA~BY
are equivalent sets.

Proof. Let g4 : A — A’ and g : B — B’ be bijections.
1° : Introducing

galgp:AUB — A UB

by

[ 1]0,g4(a)], ifz=][0,a 0} x A,
(94U fp)(@) = { PR N B o

it is easily seen that g4 LI gp is a bijection with the inversion g4~! LI gg~!. Thus, AU B a
A’ U B’ are equivalent.
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2° : Introducing
gaxgp:AxB— A xB

by
(94 x gB)(a,b) = [ga(a), g5 (b)],
it is easily seen that g4 x gp is a bijection with the inversion g4~ x gg~*. Thus, A x B a
A’ x B’ are equivalent.
3° . The mapping B4 — B’A/, frgpofo gzl, has the inverse mapping B B4,
h+— gglohog,q7 which shows that both mappings are bijective. Thus, B4 a B are equivalent.

As a consequence of the last statement, we can introduce addition, multiplication and
exponentiation of cardinal numbers by

1° #A+#B=#(AUB),
20 HAX #B =H#(Ax B),
3° (#B)#Y = 4:(B4).

In other words, we arbitrarily choose sets to represent the given cardinalities, perform the
corresponding set operation on them and determine the cardinality of the result.

Exercise. Show that 1+1=2,1x2=2,12=1,2"=2.

Exercise. Show that Ng +1=Ng+2 =---=RNg + Ng = Ng.
Hint: Arrange in a sequence.

Exercise. Show that N2 = N2 =+ - = N,. (Warning: NoR0 = Ny does not hold!)
Hint: Arrange in a sequence.

For operations with cardinal numbers, the usual laws of arithmetic apply.
3.5. Proposition. Let a,b, ¢ be arbitrary cardinal numbers. Then
a+b=>b+a,
O+a=aqa,
(a4+b)+c=a+(b+c),
axb=>bxa,
1xa=a,
(axb)xc=ax(bxc),
ax(b+c¢)=axb+axc,
0xa=0,

ab-‘r

“=a’xaf,
a® = (a®)",
(axb)=axb,
a’ = 1,

alza.

Proof. Let a = #A, b = #B, ¢ = #C. As an exercise, find appropriate bijections.
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Exercise. Let m be a cardinal number. Show that 1™ =1, m4+m =2 x m, m? =m x m.
And if m # 0, then 0™ = 0.

Operations with cardinal numbers have analogies for systems, possibly infinite, of cardinal
numbers.

3.6. Definition. The disjoint union of a system of sets {F;};cs is defined to be the union

| | 7= Jdi} x F).

icl il
As with the binary operation U, the sets {i} x F; have no common elements, and again this
is the point of this construction.

3.7. Proposition. Let {F;}icr a system of pairwise disjoint sets, i.e., such that F; N F; =
0, whenever i # j € I. Then U,c; Fi ~ | ;s Fi-

Proof. Considering a mapping h : ;. Fi — | |;c; Fi defined by
hz) = [i,z], ifxzeF;,
show as an exercise that h is a bijection.

3.8. Proposition. Consider two systems of equivalent sets F; ~ F}, i € I. Then

1° || Fi~| ] F,

el el
| C 08
el el

Proof. Let g; : F; — F/ be bijections
1° : Consider the mapping

I_lgi : |_le — |_| F{
iel iel iel

defined by

(|_|gi) (@) = g £, ifa=[if] € {i} x F

el

It is easy to see that | |;; g; is a bijection with the inversion | |;, g;l. Hence the statement.
2° : Consider the mapping

Hgi : HE - HF’L/
i€l iel i€l
defined by
<ng> ([filier) = lgi(fi)lier.
i€l
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It is easy to see that [];.; g: is a bijection with the inversion ], ; g[l. Hence the statement.

Considering cardinal numbers f; = #F;, we can define the sum and the product of a system
of cardinal numbers by

Y oh=#F,

icl i€l
IT5i=#]1F-
el el

These are direct generalizations of the binary operations ‘+’ and ‘x’ defined above. (these
are obtained when considering two-element set systems).
In analogy with Theorem we have

abei:Zaxbi,

iel el
aZiEI bi H abi)
el
b
(o) =TT
i€l el

(prove them as an exercise).
The analogy of the commutative and the associative law is that no ordering of the index
set occurs in the definition.

Exercise. Show that

da=)2="=>"Ro=No

neN neN neN

and, in general,

Zm:Noxm.

neN

3.2. Ordering of cardinal numbers

We say that a cardinal number a is less than or equal to a cardinal number b, and we write
a < b, if there is an injective mapping A — B between sets A, B that represent a and b, that
is, a = #A and b = #B. The injective mapping does or does not exist independently of the
choice of the representatives A, B (why?). We get the relation < between cardinal numbers
(notwithstanding the fact that we cannot define the class of cardinal numbers yet).

The relation < is obviously reflexive (via identical maps) and transitive (through the compo-
sition of injective maps). Cantor—Bernstein’s theorem says that relation < is also antisymmet-
ric. This is a non-trivial statement. If you have forgotten what antisymmetry is, see Definition
of @11

As usual, the sharp inequality a < b means a < b and a # b.
3.9. The Cantor—Bernstein theorem. If a < b and b < a, then a = b.
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Proof. Let a = #A a b = #B. Then there exist injective mappings f : A — Bandg: B — A.
Let us construct a bijective mapping A — B. Denote

Ag = A, By =B,

Ay =gBo, Bi= fAo,

Ay =gB1, Bay= fAj,

Az =gBs, Bs= fA,,

Ay =ygBs, By= fAs,

and A; 11 = gB;, Biy1 = fA; for every natural number i. We have
A2 A1 DA D -+,
By2B 2By D ---,

Then ¢ induces a bijection B; — A;y; and f induces a bijection A; — B;;1. Consequently,
9|B;_,\B; 1s a bijection

Bi 1\ By = Ai \ Aipa
and similarly f|a,_,\4, is a bijection

Ai-1\A; — B; \ Biy1.
By composing, we get bijections

Ao\ A1 = B1\ B2 — A3\ A3 - B3\ By — -+-
via the mapping f and bijections

By\ By - A1\ Ay — Bs\ B — A3\ Ay — -

via the mapping ¢g. These yields bijections between the unions
U A2\ Azit1 <= | Bait1 \ Baiso
ieN ieN
as well as between the unions
U Bai \ Bajy1 U Agig1 \ Agiyo.
i€N ieN
Altogether, this yields the bijection
U Bl \ Bi+1 — U Al \ Ai+1-
i€N ieN

The subsets | J, . Bi \ Bi+1 and |, .y A: \ 4;41 are equal to

ieN
UA’L\A’L+1:A\ﬂAZ7 and UBZ\Bz+1:B\ﬂBu
i€EN i€EN €N €N
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respectively. Here the inclusion C follows from A; \ A;11 € A\ ;o A for all 4; similarly for
B. The opposite inclusion D can be proved as follows. For every element a € A\ [, .y 4; there
exists the minimal ¢ such that a ¢ A;;1, whence a € A; \ A;41.

Thus, we have found a bijection

€N €N

i€N

To construct a bijection between (), .y A; and [, Bi, we can proceed as follows.

€N
A=Az = Ngonia; <5 ) flgo )4
i€N i€N i€N i€N
= ((fog)'fAi=((fog)'Bit1 =) Bais1 =) Bs-
€N i€EN €N i€eN

This finishes the proof.

The Cantor-Bernstein’s theorem is very useful in determining cardinality of particular sets.
Proving two inequalities (finding two injective mappings) is very often much easier than find-
ing a bijection. Examples will be given below (see the discussion of the cardinality of the
continuum).

Also useful is the following proposition.

3.10. Proposition. Let the cardinalities a,a’, 6,0’ satisfy a < a' and b < b’. Then
1° at+b<d 40,
2°0 axb<d xb,

3° a#£0=a"<da®

Proof. Let a = #A, ' = #A', b = #B, b/ = #B’. By assumption, there exist injective
mappings f : A — A’, g : B — B’. It is easy to see that the mappings fUg a f X g
constructed in the proof of Proposition part 1° and 2°, are injective (carry out in detail
yourself).

In case 3° one has to construct an injective mapping A% — A’  Let h : B — A be
arbitrary. By the injectivity of ¢ : B — B’, there exists a mapping h : B’ — A such that
h o g = h (for this we need A # ). Then the composition h’ = f o h is the mapping B’ — A’
sought. Observe that b’ og= fohog= foh.

To prove the injectivity of the assignment h — h’, consider two mappings hi,hy : B — A
that are assigned one and the same mapping h} = h}, : B’ — A’. Then h} o g = h), o g, whence
fohy = fohs. Since f is injective, we can cancel it from the left, obtaining h; = hs.

The classical Dirichlet principle states that for any natural number n there is no injective
mapping 7 + 1 — n. We prove it as part of a more general statement.

3.11. Dirichlet’s principle. We have
0<1I<2<3<--<N,.

Proof. Recall that n+1 = {0,1,2,...,n}. Non-sharp inequalities < follow from the existence
of injective insertions

0 — {0} —={0,1} —{0,1,2} —---— N.
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Inequalities n + 1 # n directly follow from the classical Dirichlet principle. The classical
Dirichlet’s principle will be proved by induction. For n € N, let D,, denote the satement: “there
is no injective mapping n + 1 — n.” Statement Dy is obvious, since 0 = (), while 1 # §).

Let D,, hold for some n, let us prove the validity of D, 1. Assume by contradiction the
existence of an injective mapping f : n+2 — n+ 1. Recall that n+2 = {0,1,2,...,n+1}. By
injectivity, the element f(n + 1) € n+ 1 is not an image f(k) of any other element k € n + 2
than n + 1. Consider the restriction f|,41:n+1—=n+ 1\ {f(n+ 1)}, which is well defined
and also injective. Obviously, n+ 1\ {f(n+1)} ~ n, so we got an injective mapping n+1 — n,
in contradiction with D,,.

It remains to prove the inequality n < N for all n € N. Assume the existence of an injective
mapping f : N — n. Then the restriction f|,11 is also injective, which contradicts the D,
above.

3.12. Proposition. Ifa < b < ¢, then a < c.

Proof. Let a < b < ¢. Then a < ¢, since composition of injective mappings is injective. Assume
that a = ¢. Then a < b < a. Consequently, a = b by the Cantor—Bernstein theorem, which is
a contradiction.

3.13. Cantor’s theorem. For every cardinal number a we have a < 2.

Proof. Let a = #A. Then a — {a} is an injective mapping A — pA. Hence, a < 2°%.
Assuming that A ~ pA, we derive a contradiction. Let F': A — pA be a bijection. Denote

X={acA|lagF(a)}.

Since F is surjective, there exists © € A such that F(xz) = X. Then exactly one of the following
two possibilities will happen.
1) x € X, ie., x € F(x), but then ¢ X by the definition of X, which is a contradiction;
2) x & X, i.e, x € F(x), but then € X by the definition of X, which is a contradiction.
This shows that A % pA, whence a # 2°.

3.14. Dusledek. For every cardinal number there is a larger cardinal number.

Note that we do not yet know whether there exist incomparable cardinalities a, b, i.e., ones
for which none of a < b, a = b, a > b holds. The answer is negative (they do not exist), but it
requires more effort. We will postpone it to one of the next chapters along with the so-called
laws of absorption, which allow us to determine sums and products of arbitrary cardinalities
without tedious calculations. In the meantime, we shall discuss other cardinality laws occurring
in mathematical analysis.

3.3. The cardinality of the continuum

The cardinality 2%0, of which we know so far only that it is uncountable (> X, by Cantor’s
theorem), is called the cardinality of the continuum. It will be denoted ¢. The name comes
from the name “continuum” for the set of real numbers.

3.15. Proposition. We have ¢ = #R.

Proof. 1) To prove that ¢ < #R, we construct an injective mapping 2 — R. An element of
2% is a mapping N — 2, which is the same thing as a sequence [a,,],en of zeroes and ones. To
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such a sequence we can assign the real number with the decimal expansion

E a, 10" = 0,apa1as . ..
neN

The assignment is injective because different sequences correspond to different real numbers
(problematic merges such as 1 = 0.999... do not occur because we chose a number system
with base 10 # 2).

2) To prove that #R < ¢, we construct an injective mapping R — 22 (the rational numbers
are also countably many). Let the assignment be

r— Qe ={qgeQlg<r}.

To prove injctivity, we assume that r; < ry are different real numbers. Then there exists a
rational number ¢ such that r; < g < r2. The number ¢ belongs to Q,, and does not belong
to Q«,,. Hence, Q«,, # Q«,,, which finishes the proof.

It is easy to see that the intervals I(a, b), I(a, b], I[a, b), I]a, b], where a < b are real numbers
(we use the common notation preceded by the letter I for clarity), also have the cardinality
of the continuum. It is enough to notice that the above proof of equality ¢ = #R passes for
intervals if replacing the injective map 2 — R with an injective map 2V — I, where I is one
of the intervals I(a, b). I(a, b], I[a,b), I]a, b].

The proof of the Cantor—Bernstain theorem is constructive enough to provide an explicit
bijection between any pair of sets 2V, R, 1(a,b), I(a,b], I[a,b), Ia, b]. However, it is obvious
that the constructions would be rather complicated. In the following set of exercises we shall
show how to construct such bijections more easily.

Exercise. Find a bijection between I(0,1) and R.
Hint: a composition of tan and a linear function.

Exercise. Find a bijection between I(0,1) a I(0, 1].
Hint: Decompose every interval into the union of countably many one-point sets and countably
many open intervals, e.g.,

10,)=J {2%} U UI(%%)

1€N\{0} i€N
1 11
10,1 = | {7} U UI(TH,T).
i€N 2 i€EN 2 2

Exercise. Find a bijection between 1(0,1] a I[0, 1].
Exercise. Show that
ct=c+1l=c+2=--=c+Ng=c+c=c+c+c=--=NgXc¢

N
=CXC=CXCeCXe=---=¢0,

Exercise. Show that #C = c.

Exercise. Show that the set of all continuous functions R — R has the cardinality of the continuum.
Hint: A continuous function is determined by its values at all rational numbers.

Exercise. Show that the set of all open subsets in R™ has the cardinality of the continuum.
Hint: An open subsets in R™ is determined by its rational points (points with rational coordinates).
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Example. Cantor’s discontinuum In the first part of the proof of Theorem [3.15| we constructed
an injective mapping 2% — R. To a sequence [an]nen Of zeros and ones, we assigned a real number
with decimal expansion

E a,10" = 0, apaiasz . ..
neN

The image of this mapping is a subset in R, which is known as the Cantor discontinuum. It can be
described as the set of all real numbers from the interval I[0, 1] whose decimal expansion contains only
zeros and ones (including those with infinitely many consecutive ones). We obtain the same set by
excluding the open interval I(3, 2) (the middle eight tenths) from the interval I[0, 1], obtaining the

10 10
union of two closed intervals 1[0, 3] UI[-%, 1], which can be subject to an analogous procedure and so

on and so forth. When repeating indefinitely the procedure of removing the middle eight tenths, we
arrive at Cantor’s discontinuum. What the first part of the proof of Theorem [3.15]| actually means is
that the Cantor discontinuum has the cardinality of the continuum.

Exercise. Prove that the overall length of the removed intervals is equal to 1.

3.4. Cantor’s proof of the existence of transcendent numbers

In Cantor’s time, only particular transcendent numbers were known. Moreover, the set of
transcendent numbers is not fully explored till today. Cantor proved with surprising ease that
there are infinitely many transcendent numbers.

Let us recall the definitions. An algebraic number is a complex number that is the root of
a nonzero polynomial with rational coefficients. A transcendent number is a complex number
that is not algebraic.

3.16. Proposition. The cardinality of the set of algebraic numbers is Ng.

Proof. Let 2 be the set of all algebraic numbers.
1) Ry < #2, since every rational number is algebraic (why?).
2) Let us show that #20 < X,. The set of algebraic numbers can be expressed as the union

A= | J A,

neN

where n is the degree of the respective minimal polynomial (the polynomial of the minimal
degree among all monic polynomials with rational coefficients possessing the root a). The
cardinality of the set 2, is n x #Q™ =n x Vo™ = Ny (why?). Thus, we get

A< # A <D AU, =D TRy =Ro x R =Ry,

neN neN neN
Consequently, #2 = Ny.

3.17. Corollary. The cardinality of the set of all transcendent numbers is c.

3.5. Other cardinalities of mathematical analysis

We have already mentioned that there are infinitely many (even a proper class) of infinite
cardinalities. Besides alephs R, which are rather difficult concepts, there are infinitely many
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cardinalities, which are called J-numbers (3 is the second letter of the Hebrew alphabet). We
define 3,, for all natural numbers n € N by recursion

:0 = No, :nJrl = 2:”.

Thus,
R <
J=2 = =220 =2 =92 =9
Obviously from Cantor’s theorem, Jy < J; < Jy < ... We also have
Jo=#N, i =#pN, Dp=H#ppN, I3=FpppN,
J-numbers are abundant in mathematical analysis.

Exercise. Show that the following sets have the cardinality of Js.
1) pR of all subsets of the set of real numbers;
2) R® of all real functions of one real variable;
3) D nen R® of all real functions of finitely many real variables.

3.18. Remark. How the arithmetic of cardinal numbers differs from the arithmetic of natural
numbers? First of all, one can cancel neither in sums nor in products. For example, 1 + Xy =
04N, but 1 # 0. Similarly, 1 xRy = 2xXg, but 1 # 2. Consequently, no reasonable subtraction
and division can be introduced.

What the two arithmetics do have in common is that there exist no divisors of zero. If
ax b=0, then a =0 or b =0, because the Cartesian product of nonempty sets is nonempty.
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4. Well-ordered sets and ordinal numbers

In the previous pages we reached some basic understanding of the cardinal numbers, even
though quite leaky one for now. We have a relatively complete knowledge about countable sets,
where the powerful method of mathematical induction works. The method can be generalised
to so-called transfinite induction, which is applicable to so-called well-ordered sets.

While cardinal numbers generalise natural numbers in the sense of quantity, ordinal numbers
generalise natural numbers in the sense of ordering. Both continue beyond finite numbers,
but in different ways. To a single infinite cardinal number there correspond infinitely many
ordinal numbers. For example, while there is only one countable cardinality N, there will be
uncountably many countable ordinal numbers (exactly R1). And since there are never enough
surprises, we shall establish a bijection between cardinal numbers and ordinal numbers.

4.1. Ordering

To start with, we recall general ordering relations.

4.1. Definition. A relation < on a class A is said to be antisymmetric, if (a <bAb < a) =
a = b holds for all a,b € A.
A reflexive, antisymmetric and transitive relation is called an ordering.

If < is an ordering, then > defined by a > b < b < a is also an ordering.

If < is an ordering on class A, then the relation < defined by by the prescription a < b <
(a <bAa#b) is called is a sharp ordering. Similarly, >.

A class along with a specified ordering is called an ordered class. A set together with a
specified ordering is called an ordered set.

Every subclass B C A of an ordered class A is an ordered class, if we define the induced
ordering on B by the formula <p = <4 N (B x B), that is, if we require a <g b < a <4 b for
all a,b € B. Similarly for the sharp ordering.

Example. The inclusion C is an arrangement on the universal class U and all its subclasses. A
sharp inclusion C is a sharp ordering on the universal class U and all its subclasses.

Example. The sets N,Z,Q,R are ordered “by size” in the usual way.
Example. Empty relation ) x ) on the empty set is both an ordering and a sharp ordering.

4.2. Definition. Let A be an ordered class. An element m € A is called the greatest element
resp. least element, if

(Vac A)a<m rtesp. (Va€ A)m <a.
An element m € A is called a mazimal element resp. a minimal element, if

(Vace A)(m<a=m=a) resp. (VacAd)(a<m=m=na).

Example. The universal class U has the least element () and no greatest element.
Exercise. An ordered class has no more than one greatest and no more than one least element.

Exercise. The greatest element, if existing, is the only maximal element. The least element, if
existing, is the only minimal element.
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Exercise. Give an example of an ordered set that has a single maximal element and no greatest
element.
Hint. The set is necessarily infinite.

4.3. Definition. Let X be an ordered class, A C X its subclass. An element m € X is called
an upper bound resp. a lower bound of the subclass A, if

(Vae A)a<m rtesp. (Va€ A)m <a.

If there is a least upper bound, it is called the supremum and is denoted by sup A. If there is
a greatest bottom bound, it is called the infimum and is denoted inf A.

Exercise. Every set A C U (i.e. a set of sets) has both a supremum and an infimum with respect
to the ordering by inclusion. Namely, sup A = |J A and inf A =) A.

4.2. Chains

4.4. Definition. Elements a, b of an ordered set are called comparable if
(a<b)V(b<a).

An ordering < on a class A is said to be total (or complete) if every two elements of A are
comparable. A class together with a total ordering is called a totally (or completely ordered
class.

A totally ordered set is called a chain.

Example. The set of real numbers with the usual ordering is a chain.

A subset of a chain is a chain under the induced ordering (because it has no non-comparable
elements). It is called a subchain.

Example. The intervals I(a,b), I(a,b], I[a,b), I[a,b] as well as the sets N, Z, Q are subchains in the
chain of all real numbers.

Example. The ordering of the class & by inclusion is not complete. The sets {a} and {b}, where
a # b, are incomparable.

Let M be a chain, let m,n € M be two elements such that m < n and there is nop € M
such that m < p < n. Then we say that the element n is the successor of the element m and
that the element m is the predecessor of the element n and we write m <o n and n o> m.

Exercise. Show that every element a € M has at most one predecessor and at most one successor.

4.3. Well-ordering

4.5. Definition. We say that an ordered class T is well ordered if every non-empty subclass
A C T has the least element.

4.6. Proposition. FEvery well-ordered class A is totally ordered.

Proof. Suppose not, then there exist incomparable elements a, b in A. Then the subset {a, b} C
A is nonempty and has no least element, which is a contradiction.

4.7. Proposition. Every finite chain, including the empty chain, is well ordered.
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Proof. By induction on the length n of a chain B,, = {by < by <---< by_1}. For n = 0 there
is no nonempty subset, i.e., nothing to be checked.

Let the statement hold for n. Consider an (n + 1)-element chain B,y1 = {bg < b1 <---<
bp—1 < by} and its nonempty subset A. If AN B,, is non-empty, then it has the least element,
which is also the least element in A. If AN B,, is empty, then A = {b,}, which has the least
element b,,.

Examples. 1. Sets Z, Q, R are not well ordered, as they contain no least element.
2. The semi-closed interval I[0, 1) is not a well-ordered set because its non-empty subset I(0, 1) does
not contain the least element.

4.8. Proposition. The set of all natural numbers is well ordered.

Proof. Let A C N be a non-empty subset, let a € A be an arbitrary element. Elements larger
than a do not affect the existence of the least element, elements smaller or equal to a form a
non-empty finite chain that has a least element, say m. Then m is the least element of A.

4.9. Proposition. Every subset A of a well-ordered set X is well ordered under the induced
ordering.

Proof. Let B C A be a non-empty subset. Then B C X has the least element, which is also
the least element of B as the subset of A with the induced ordering.

Recall that an element b of the ordered set is a successor of the element a, if a < b and
there is no ¢ such that a < ¢ < b.

4.10. Proposition. Fvery element of a well-ordered class, except the greatest, has a successor.

Proof. Let X be a well-ordered class, Let a € X be an element that is not the greatest element
in X. Let B={z € X | a <} If class B were empty, we would have z > a for all x € X
(since X is a chain) and a would be the greatest element in X, which, by assumption, is not.
Thus, B is non-empty, hence has the least element. Let us denote it by b. Obviously, a < b.
Let us show that b is the successor of a. Suppose not, that is, there exists an element ¢ such
that a < ¢ < b. Then ¢ € B, and therefore necessarily b < ¢, which is a contradiction.

As we already know, every element of a chain has at most one successor. If existing, the
successor of an element a will be denoted a®.

A well-ordered set can be represented by a diagram in which the elements are ordered from
left to right from smaller to larger and each element is connected by a line to its successor.

Examples. The five-element chain has the diagram
O—0—0—0—0,

The set of natural numbers has the diagram
0—0—0—0— -,

where the three dots represent the countable repetition of the pattern o—.

Exercise. Show that a well-ordered set cannot contain an infinite strictly decreasing sequence of
elements --- < a2 < a1 < ag.
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4.4. Isotone mappings and isomorphisms

4.11. Definition. A mapping f : X — Y between ordered classes is called isotone, if a < b
implies f(a) < f(b) for all a,b € X.

A mapping f : X — Y mezi uspordadanymi tiidami se nazyva strictly isotone, if a < b
implies f(a) < f(b) for all a,b € X.

Example. The identical mapping idx : X — X is both isotone and strictly isotone for arbitrary
ordering on X. The constant mapping X — 1 (all on one) is isotone. It is not strictly isotone, if X
has more than one element.

Exercise. Prove that an injective isotone mapping is strictly isotone.

If a bijective mapping is isotone, it does not necessarily mean that the inverse mapping is
also isotone. The simplest counterexample is a mapping of a two-element set consisting of two
incomparable elements into a two-element chain.

4.12. Definition. A bijective mapping f : X — Y between ordered classes is called isomor-
phism, if both f i f~! are isotone. Two ordered classes X,Y are said to be isomorphic, if there
is an isomorphism between them. We write X =Y.

Exercise. Every isomorphism X — Y is a strictly isotone map.

4.13. Proposition. Fvery bijective isotone mapping X — Y, where X is totally ordered, is
an isomorphism.

Proof. Let f(a) < f(b). Then either a < bor a =b or b < a., since X is totally ordered. The
second possibility contradicts injectivity, the third one contradicts isotonicity, and we are left
with a < b.

4.5. Ordinal numbers

Isomorphic ordered sets are said to have the same ordinal type. Ordinal numbers can be
defined as ordinal types of well-ordered sets. This means that two ordinal numbers are equal
if and only if they are ordinal types of isomorphic well-ordered sets. We introduce special
symbols for ordinal types analogously to cardinal numbers, using isomorphisms of well-ordered
sets instead of bijections between sets.

An isomorphism of well-ordered sets is a bijection. Consequently, isomorphic well-ordered
sets have the same cardinality. Hence, every ordinal number has a certain cardinality, and
multiple different ordinals can be of the same cardinality.

As with cardinal numbers, this kind of definition does not allow to introduce the class of
ordinal numbers. This will be done later by using von Neumann’s definition of ordinal numbers
or ordinals, which is, however, not as illustrative as the definition using ordinal types.

Examples. 1. Every natural number n also denotes the ordinal type of a chain of n elements (we
already know that it is well-ordered). Its diagram consists of n points connected by lines, e.g. 1,2,3
have diagrams

o, o—o0, 0—0—0,

respectively.
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2. Symbol w denotes the ordinal type of the set of all natural numbers ordered by size (also a
well-ordered set). We have given its diagram o—o—o—o—-- - above. Another suitable illustration of
w is the infinite row

of constituents (rods, columns, poles, bollards, milestones, pickets, or other objects) extending to the
horizon.

Remark. It is instructive to view this pdf file at increasing resolution.

4.6. The arithmetic of ordinal numbers

Like cardinal numbers, ordinal numbers can be added, multiplied and exponentiated. We
define the operations of addition and multiplication similarly to the operations of the same
name with cardinal numbers, only we need to ensure that disjoint union and product of well-
ordered sets are well ordered. None of the operations is commutative. Yet, exponentiation of
ordinal numbers is completely different from exponentiation of cardinal numbers.

4.7. Ordinal addition

4.14. Definition. Consider two well-ordered sets A, B. The set ({0} x A)U ({1} x B) ordered
by

(i,a) <(3,0) & i<jV(i=jra<b)
is called the disjoint union of well-ordered sets or the sum of well-ordered sets A, B and is
denoted by AU B or A+ B.

Elements of disjoint union are arranged

1. by the first components, assuming 0 < 1;

2. or, in the case of equality of the first components, by the second components, using the

ordering of the set where both elements are located.

Otherwise: Elements originating from A precede all elements originating from B, whereas
elements originating from one and the same set are arranged in the same way as in “their”
set.

Schematically,

A+B=[A}B]

4.15. Definition. Let « and 8 be ordinal types of well-ordered sets A and B, respectively.
We define the sum a + 3 as the ordinal type of the disjoint union A LI B.

The definition is correct because if A = A’ and B = B’ are isomorphic well-ordered sets,
then AU B, A’ U B’ are isomorphic well-ordered sets. The proof of isomorphism is similar to
the proof of equivalency of sets (if f, g are isomorphisms, then f U g is an isomorphism). The
proof of well-ordering can be found below even in a more general setting.

Example. What is 1+ 2?7 We have

oUo—o =[e}-{o=e] = oo,

and, therefore, 1 + 2 = 3.
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Example. What is 1 + w? We have

oLo—o— = [e} feo ] = oo =

I + IIIllih = III|I|..

(one + row = row). Hence, 1 + w = w. Similarly 2 + w = w, etc.

or

Example. What is w + 17 We have

oo Uo=[emo=r o] =000

III|I|.. + I = III|I|.. I

Thus, w + 1 # w. Indeed, w contains a unique element with no predecessor, while w + 1 contains two
such elements. Similarly w + 2 # w + 1, etc.

Example. What is w + w? We have

o—Oo—: -+ lOo—0—= .-

:lo_o_...}_lo_o_...l

= 0—O0— +++O—O0O—= -+«

IIIllm + IIIllh. = IIIllm IIIllh.

(two rows). We see that w + w is another ordinal number, different from those already constructed.
Similarly w4+ w+1, ..., w+w+ w are

IIIIlln; IIIIlln; I7 ceey IIIIlln; IIIIlln; IIII|I|> 5

respectively, i.e., are different new ordinal numbers.

or

The above examples show that, unlike cardinal addition, ordinal addition is not commuta-
tive. For example, 1 + w = w # w + 1. Nonetheless, addition of ordinal numbers is associative.

Exercise. Prove associativity of addition.

We introduce a generalisation to systems. A well-ordered system of well-ordered sets is a
system {A;};cr, where the individual summands A; and the index set I are well ordered. The
disjoint union

| |4 = J{i} x 4)
iel iel
will be ordered according to
(iaai)g(jvaj) < Z<.7\/(Z:J/\az§aj)

(here a; € A; a a; € Aj).
Again, elements of disjoint union are arranged
1. by the first components, assuming the ordering from the index set I;
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2. or, in the case of equality of the first components, by the second components, using the
ordering of the set where both elements are located.

Schematically,

| A =4, |- A

icl

)

7’ A,

with individual “blocks” ordered in the same way as their indices in the set I.

Clearly, the previously introduced disjoint union of two sets is a special case where the index
set is the chain 0—1. The generalisation to an n-element chain is obvious — we get the sum
of n sets.

4.16. Proposition. The disjoint union of a well-ordered system of well-ordered sets is a
well-ordered set.

Proof. Let B be a non-empty subset in the disjoint union | |;.; A;. Let I be the set of all
indices ¢ € I such that BN A; # 0. Obviously, Ig # @ is a non-empty subset in a well-ordered
set I, so it has the least element, which by definition is the least index of ¢ such that BNA; # .
But then BN A; is a nonempty subset of the well-ordered set A;, so it has a least element that
is also the least element of the whole subset B.

4.17. Definition. Let «; be ordinal types of well-ordered sets A;, i € I, where I is well-ordered.
We define the sum } ,_; a; as the ordinal type of a disjoint union | |, ; A;.

Example. We have
Siw

as can be easily seen from the diagram

E]—{o—o]—[o—o—o ]—

4.8. Ordinal multiplication

4.18. Definition. Let A, B be two well-ordered sets. The set A x B with the ordering given
by the formula

(a,b) < (d\V) & a<dV(iea=d Ab<P)
is called the lezicographic product of well-ordered sets A, B and is denoted by A x B.

In words: The elements of the lexicographic product are ordered

1. by the first components,

2. by the second components in the case of equal first components.

The origin of the attribute “lexicographic” can be found in the dictionary arrangement of
two-letter words. This is illustrated in the examples below.

Otherwise said, A times B means that we replace the elements of the set A by copies of the
set B; within the same copy we take the ordering from B, while between different copies we
take the ordering from A. Schematically,

AxB=[B | {B}{B} -
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Clearly, the product A x B is nothing but the disjoint sum
AxB=||B
A

of a system consisting of copies of the set B, one for each element of A, and is therefore it is
well ordered.

Example. Let us compute 3 x 3. We have
[0,0] [0,1] [0,2]
3x3=<0[,0 [1,1] [1,2]
(2,0] [2,1] [2,2]
with the lexicographical ordering
[0,0] < [0,1] < [0,2] < [1,0] < [1,1] < [1,2] < [2,0] < [2,1] < [2,2].

We see that it is nothing but the disjoint union

[10,01—[0, 1]—(0, 2] | [1,01—[1, 1]—[1,2] |- [2, 0]—[2, 1]—{[2,2] |

Since the lexicographic product of two well-ordered sets is a special case of the sum of a
system of sets, it is well-ordered.

Consider ordinal numbers «, § which are ordinal types of sets A, B, respectively. Define the
lexicographic product a x 8 as the ordinal type of the lexicographic product A x B.

The meaning of lexicographic multiplication is “how many times what,” that is, o x 8
means “a-times 5.” Since lexicographic multiplication is generally non-commutative, the order
matters.

4.19. Definition. Let A, B be two well-ordered sets. The set A x B with the ordering given
by the formula

(a,0) <(d\V) & b<bVd=bAa<d)
is called the anti-lexicographic product of well-ordered sets A, B and is denoted by A - B.

In words: The elements of the anti-lexicographic product are ordered

1. by the second components,
2. by the first components in the case of equal second components.

Obviously, the lexicographic product A x B is isomorphic to the anti-lexicographic product
B - A via the bijection (a,b) <— (b, a).
Thus, the product A - B is identifiable the disjoint sum

A-B=| A
B

or, schematically,

A-B=[Al{Al{A]—-

In terms of ordinal numbers, we get the reverse multiplication 8-« = « x 3, which will be
read “a B-times.”

In comparison to the lexicographic product, the anti-lexicographic product better combines
with exponentiation, which is its “raison d’étre,” see below.
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Example. What isw 2 =|],w =2 x w? We get

[0} {oo ]

which is w + w or

(two infinite rows one after another).
In contrast, 2w =[] 2=wx2is

lo—o}—{o—o}—{o—o}—---,

or

0—0—0—0— -,

which is w. We see that w-2 #w =2 w.

Example. Whatisw-w=w X w =], w? We get

[ }{o—o— J{o—o— |},

or
O—O— +++ O—0O— +++ O—O— =+ =+ »

(an infinite row of infinite rows, or a doubly infinite row).
We get the same result if we replace each rod with an infinite row in I . Observe that w elements
have no predecessors.

or

The product w - w can be written also as w?.
Exercise. What is 1 + w?? What is w + w??

Exercise. Show that each element of w? is of the form w-a; + ao, where a1, ap are natural numbers.
Hint. Cut the previous picture at some point.

Example. Twice the ordinal number w? is w? - 2 = 2 x w?, which is

I I IIIlln., I Illllm. Illllm Illlm | [ I I IIIllm I Illllm Illllm Illluh | [

(two infinite rows of infinite rows). How many elements have no predecessors? Similarly for higher
multiples.

3

Example. Let us define w® as w times the ordinal number w?, i.e.,

(triply infinite row). We get the same result when we multiply w? times w. Note that w? elements
have no predecessors.

Exercise. Show that each element of w?® is of the form w? - az + w - a1 + ao, where az, a1, a0 are
natural numbers.
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Example. Analogously, w? is
| [TV " SO O | [ R V. T N VR U VR
(quadruply infinite row). In this case, w® elements have no predecessor.

Exercise. Show that each element of w* is of the form w?- as+w?-as +w- a1 +ao, where as, az, a1, ao
are natural numbers.

Not all laws of usual arithmetic apply to ordinal numbers. We have already seen that the
commutative law is generally invalid for addition and multiplication. The full list of valid
identities follows.

4.20. Proposition. Identities

O+a=a=a+0,

(a+B)+y=a+(B+),
l-a=a=a-1,

(a-B)-y=a-(8-7),
a-(Bty)=a B+a-,
0-a=0=a-0,

hold for arbitrary ordinal numbers «, 3,.
Proof. A proof by transfinite induction will be given later.

4.21. Definition. Given a polynomial p = a, 2" +a,_12" "1+ +a1x+ag € N[z] of a single
indeterminate z with coefficients from N, we can introduce the ordinal number

pw)=w"ap +w" a1+ Fw-ar +ao.
The order of operations must be obeyed!

4.22. Proposition. The numbers p(w) ezhaust the ordinal numbers expressible as finite sums
and products of natural numbers and w.

4.9. Ordinal exponentiation

Unlike the sums, neither infinite products nor infinite powers carry a natural well-ordering.
For example, 280, the set of countable sequences of numbers 0, 1, does admit a lexicographic
ordering, but we can easily find an infinite decreasing sequence

[1,0,0,0,0,...] > [0,1,0,0,0,...] > [0,0,1,0,0,...],
Infinite products and powers must be constructed in a different way.

4.23. Definition. Let o and 8 be ordinal types of well-ordered sets A and B, respectively.
Then o is defined to be the ordinal type of

U 4"

keB
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where  J A* is the plain, not disjoint, union of the sets A* of type a*. The finite powers

AP = A x .. x A,
k

are embedded one in another in such a way that A* is identified with {0} x A* C A¥*! where
0 denotes the least element of A.

Example. Let us show that

QWZUQk:w.

kEw

Here 2° is the one-element set 1 = {0}, embedded into 2' = {[0],[1]} as the subset {[0]}. Next,
2! = {[0], [1]} is embedded into 22 as {[0,0], [0, 1]}, while 2% is embedded into 2* as {[0,0,0], [0,0, 1],
[0,1,0], [0,1,1]}, etc. We see that the union (J,,, 2% can be identified with the set of all sequences

..,a2,a;,ap infinite to the left, where finitely many elements a; are 1, while the others are 0. The
ordering remains lexicographic, so one decides according to the leftmost a; = 1. We get

(...,0,0,0) < (...,0,0,1) < (...,0,1,0) < (...,0,1,1) <--~,
which is isomorphic to the chain w, i.e.,

2% = w.

Remark. Note that contrary to the cardinal number 2%, the ordinal number 2¢ is countable.

Example. Let us show that

1“:U1’“:1.

kew

Since 1 C 2, we can use the procedure from the previous example, restricting ourselves to sequences
composed of the unique element 0 € 1. However, there is only one such sequence, namely (..., 0,0,0,0).

Example. Let us compute w®”. Again, we can use the procedure from the previous example, but
this time the the sequences ..., a2, az2,ao are constructed from all natural numbers, while everything
else remains the same, including the ordering. We get

(...,0,0,0,0) <(...,0,0,0,1) < (...,0,0,0,2) < ---
<(..,0,0,1,0) < (...,0,0,1,1) < (...,0,0,1,2) < - - -
<(...,0,0,2,0) < (...,0,0,2,1) < (...,0,0,2,2) < ---
<(...,0,1,2,0) < (...,0,1,2,1) < (...,0,1,2,2) < - - -,
which is a completely new ordinal number, because all ordinal numbers p(w) = w"™ - ¢, +w" i1+
-+ w-c1 + co constructed so far correspond to finite sequences an, ..., az,az, ag.
The diagram of the set w®” is obtained when in the set w we replace each constituent by the set

w (we get w?), then again replace each constituent with the set w (resulting in w®), and so on ad
infinitum. This produces a self-similar set, each part of which is similar to the whole, i.e., a fractal.

Example. A similar pattern can be used when constructing the number w‘*’w, only the sequences

used will be indexed by the elements of w*. Analogously w” , ete.
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. w w®
Remark. All ordinal numbers w®, w* , w* ..., are countable.

Here we finish our excursion into the zoo of ordinal numbers. We see that the world of
ordinal numbers is much more diverse than the world of cardinal numbers. Let us emphasise
that all ordinal numbers constructed so far have a countable cardinality.

4.24. Proposition. For arbitrarary ordinal numbers «, ,y, we have

(aﬁ)V — abf,

Proof. A proof by transfinite induction will be given later.

In terms of the lexicographic product, we would have a®+7 = a7 x o and (a?)? = a7*5,
the order of 5 and « being reversed.

Exercise. Show that (8+1) -« differs from 8-« ++ -« in general. Thus only one of the distributive
laws between multiplication and addition holds.
Hint: Choose a =2, f=w, y=1.

Exercise. Show that («-3)” can differ from both o” - 37 and 37 - a”.
Hint: Choose a =w, =~ = 2.

4.10. Transfinite induction

The principle of transfinite induction enables us to prove statements of the form
(Vz € X) ¢(),

where X is a well-ordered class. The induction step consists in proving that the validity of
¢(x) for all x < a implies the validity of ¢(a).

4.25. Proposition. Let ¢(x) be a formula, let X be a well-ordered class. Let (Vo < a) ¢(x)
imply ¢(a), for all a € X. Then ¢(z) holds for all x € X.

Proof. Let A C X denote the subclass of elements x such that ¢(z) does not hold. Suppose
that A # 0. Let a be the least element in A, i.e., the least element for which ¢ does not hold.
For all elements = < a (if existing) then ¢(x) does hold. By assumption, ¢(a) holds as well,
which contradicts a € A. Therefore, A = () and ¢(x) holds for all z € X.

It may seem that ¢(z) need not hold for the least element a of the class X. The opposite
is true, for the class {# € X | # < a} is empty in this case, and therefore the condition
(Vz < a) ¢(z) holds.

The principle of transfinite induction also allows us to construct sets F, dependent on an
element of a well-ordered class X. To do this, it is sufficient to prove a formula of the form

(Ve € X)@3F, cU) ¢p(x, F,).
In this case we speak of a transfinite recursive construction of a class F.
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5. Zermelo’s theorem and its consequences

Zermelo’s theorem says that every set can be well ordered. This is a very important theorem,
the corollary of which is that transfinite induction is applicable to every set.

5.1. Zermelo’s theorem. There exists a well ordering on every set.

Ernst Zermelo (1871-1953) proved this theorem first in the paper E. Zermelo, Beweis, dafl
jede Menge wohlgeordnet werden kann, Math. Annalen 59 (1904) 514-516.

Several proofs are known, all of which use the axiom of choice, which is necessary since the
axiom is a consequence of Zermelo’s theorem. In fact, given a well-ordered set, one can select
the smallest element from each nonempty subset, which yields a selection mapping.

Exercise. Find a well-ordering of the set Z of integers.
Hint: Try the ordinal type w 4+ w.

Exercise. Find a well-ordering of the set Q of rationals.
Hint: Try the ordinal type w X w.

5.2. Remark. According to Zermelo’s theorem, there is a well ordering of the set of real
numbers. However, there is no known formula that would specify such an ordering. There is
also no known formula that would specify a selection mapping pR\ {0} — R, i.e., which would
select of one element from each non-empty set of real numbers.

Before proving Zermelo’s theorem, we present several its consequences, which are important
in diverse branches of mathematics.

5.1. Hausdorff’s principle

5.3. Hausdorff’s maximality principle. Every chain in an ordered set can be extended to
a mazimal chain.

A maximal chain is a chain to which no element can be added (that is, it ceases to be a
chain when any element is added). In the proof we use Zermelo’s theorem.

Proof. Let (A, <) be any ordered set, B its subchain. By Zermelo’s theorem, there exists a
well-ordering on the set A, which we denote by <. Using transfinite recursion, we successively
add elements of A to B as long as the result remains a chain. More exactly, we define a map
C:A— pAby

B if a is the least element of A with respect to <,

{a} U U c), iff{atu U C(b) is a chain with respect to <,
(a) = b<a b<a

U C(b) otherwise.

b<a

Then
c=Jcw

a€A

is the maximal chain sought, because it contains B, and if ¢ € A is an element comparable
with all elements of C, then it is already in C, since it had to be added during the transfinite
recursion.
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5.2. Zorn’s lemma

Zorn’s lemma is a tool for construction of maximal elements in various parts of mathematics.
The lemma was published by the German mathematician Max Zorn in 1935. A slightly weaker
version was published by the Polish mathematician Kazimierz Kuratowski in 1922.

5.4. Zorn’s lemma. Let A be an ordered set such that every chain in A has an upper bound.
Then for every element a € A there is a maximal element b € A, such that a < b.

Zorn’s lemma is an easy consequence of Hausdorfl’s principle.

Proof. According to the Hausdorff principle, the one-element chain {a} can be extended to a
maximal chain I that contains it. By assumption, I has an upper bound b. Obviously, b is the
maximal element sought.

Zorn’s lemma is often applied in situations where A is a system of sets (e.g., algebraic
structures) for which the union of a chain of of nested sets is again an element of the system
(in this form the lemma was proved by K. Kuratowski in 1922). It can thus be shown, for
example, that every proper subalgebra can be embedded in a maximal proper subalgebra.

5.3. Initial segments and ordering

5.5. Definition. Let A be a chain. A subset I C A is called an initial segment in A, if b € [
whenever b € A and b < a for some a € 1.
An initial segment [ is said to be properif I # A.

Example. Every chain is its own initial segment. The empty set is a proper initial segment of every
nonempty chain.

Example. {0,1,2} is an initial segment of N.

Exercise. Prove that an initial segment K C J of an initial segment J C [ is an initial segment
KCI.

Exercise. 1.1If {I;};ecs is a system of initial segments in a chain A, then the union UjeJ I; is also
an initial segment in A. Prove.

2. If {I;}jes is a system of initial segments in a chain A, then the intersection (), ; I; is also an
initial segment in A. Prove.

5.6. Proposition. If I, I’ are two initial segments in a chain A, then I CI' or I' C I.

Proof. Suppose, on the contrary, that both I'\ I’ and I’\ I are non-empty and contain elements
1 and 7', respectively. Since A is a chain, ¢ and ¢’ are comparable and, therefore, ¢ < ¢’ or ¢’ < 1.
However, I, are initial segments, whence ¢ € I’ or i’ € I, which is impossible because of the
way 7 and 7’ were introduced. Thus, at least one of I\ I’ and I’ \ I is empty, which means that
ICI'orI'CI.

From now on A will be a well-ordered set. For any element of a € A, we introduce
A, ={rcAlz<al.
The set A, is obviously a proper initial segment in A.

5.7. Proposition. Let I C A be a proper initial segment. Then there exists an element a € A
such that

I1=A,.
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Proof. If I is a proper initial segment, then the difference A \ I is non-empty. Hence, A\ T
contains the smallest element. Let us denote it by a. Then I = A,.

Example. The proper initial segments in w coincide with the finite ordinal numbers.

5.8. Theorem (trichotomy). Let A, B be well-ordered sets. Then one of the following three
possibilities takes place:

1. A is isomorphic to B;

2. A is isomorphic to a proper initial segment in B;

3. a proper initial segment in A is isomorphic to B.

The idea is to assign the smallest element that does not have an image to the smallest
element that does not have a preimage. A formal proof can go as follows.

Proof. Consider the set 7 of all triples (I, ¢, J) such that I is an initial segment in A, J is
an initial segment in B, and ¢ : [ — J is an isomorphism. Let

7= U I, and J= U J.

(I,¢,J)€T (1,4, )T

be, respectively, the union of all initial segments I and J that correspond to triples (I, ¢, J) €
T. Then, Z is an initial segment in A, and J is an initial segment in B (see Exercise 1 before
Proposition .

Let (I,¢,J), (I',¢, J") belong to T. Let us prove that ¢|;~p = ¢'| ;477 Consider an arbitrary
element iy € I N I'. Denote jo = ¢(ig) and j| = ¢'(ip). Both jo and jj belong to B. Without
loss in generality, jo < j§. If jo < j{, then we get a contradiction as follows.

Let i1 = ¢'"(jo), j1 = #(i1). Then iy < i, since ¢'(i1) = jo < jo = &'(io). Next, let
io = ¢'71(j1), jo = ¢(ia). Then iy < iy, since ¢ (iz) = j1 < jo = ¢'(i1). This can be repeated

infinitely, leading to an infinite strictly decreasing sequence ig > i1 > iy > ---, which is
impossible, since {ig, 1,42, ...} would be a nonempty subset with no least element.

io ///; Jo

i2 / ,j2

i3 - 73

Thus, jo = j{, i-e., ¢(io) = ¢'(ip), which shows that ¢|;n; = ¢'|;qp7- This means that every
element of ¢ € 7 has exactly one image ¢(i) € J.

Let us prove that Z = A or J = B. Assume, on the contrary, that both A\ Z and B\ J
are non-empty. Let a € A\Z, b € B\ J be the least elements. Denote Z* = Z U {a} and
J* = JU{b} (the successors of Z and J with respect to C). Then the isomorphism ¢ : Z — J
can be extended to ¢ : Z* — J* by ¢(a) = b. This, however, contradicts the definition of Z
and J. This proves that at least one of statements 1-3 holds.
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5.9. Lemma. Let A be a well-ordered set, let ¢ : A — A be a strictly isotone map. Then
a < ¢(a) for alla € A.

Proof. If not a < ¢(a), then a > ¢(a). Denote B = {a € A | a > ¢(a)}. Assume that A is
not empty. Let b € B be the least element. Since ¢(b) < b and ¢ is strictly isotone, we have
d(p(b)) < ¢(b), whence ¢(b) € B. This contradicts the fact that b is the least element in B.

Example. The mapping ¢ : N — N, ¢(n) = n + 1, is strictly isotone and n < ¢(n).

5.10. Lemma. Let A be a well-ordered set. Then there is no strictly isotone mapping ¢ : A —
Ag, where a € A.

Proof. Assume that a strictly isotone mapping ¢ : A — A, exists. Then ¢(a) € A,, whence
¢(a) < a. This contradicts the last lemma.

5.11. Corollary. No well-ordered set A is isomorphic to a subset of a proper initial segment
of A.

Proof. Let ¢ : A — ¢ A be an isomorphism such that ¢ A is a subset of a proper initial segment
in A. By Proposition there exists a € A such that A C A,. In particular, ¢(a) € A,.
Hence, ¢(a) < a, which contradicts Lemma

It easily follows that no two statements in Theorem [6.8] can be true simultaneously.

5.4. Ordering of ordinal numbers

5.12. Definition. Let o and 8 be ordinal types of well-ordered sets A and B, respectively.
Let
a=08 o a<f or a>p

according to whether
A is isomorphic to B or
A is isomorphic to a proper initial segment in B or
B is isomorphic to a proper initial segment in A,
respectively.

5.13. Proposition. The above definition introduces a total ordering between ordinal numbers.

Proof. Reflexivity and transitivity are obvious. Antisymmetry then follows from Corol-
lary Theorem implies that one of the possibilities @« = 8, a < 8, a > (§ always
occurs.

5.5. Comparability of cardinal numbers

It can be derived from Zermelo’s theorem (which we have not proved yet) that every two
cardinal numbers are comparable.

5.14. Proposition. Let a,b be cardinal numbers. Then a =>b or a < b or a > b.

Proof. Consider sets A and B of cardinalities a and b, respectively. Both A, B can be well-
ordered by Zermelo’s theorem, and then by Theorem [6.8] there is an injective mapping A — B
or B — A.
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