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Zář́ı 2012

Matematická analýza
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1. Introduction

This thesis is based on three independent papers connected by one common subject - Irregular
Recurrence (e.g. properties of systems possessing at least on irregularly recurrent point). We attach
these papers as a supplement.

First paper ”Distributional chaos and irregular recurrence” is joint work with my supervisor,
Prof. Jaroslav Smı́tal and was published in Nonlinear Analysis in 2010 (see ref. [1]). Second paper
entitled ”Counterexamples to the open problem by Zhou and Feng on minimal center of attraction”
is also joint work with my supervisor, Prof. Jaroslav Smı́tal and was published in Nonlinearity in
2012 (see ref. [2]). The last paper ”Irregular recurrence in compact metric spaces” was submitted
to Archiv der Mathematik in 2012 (see ref. [3]).

Properties of irregularly recurrent points were studied by Chinese mathematician Z. Zhou et. al.
in the nineties. These points also have close connection to the topological entropy, and distributional
chaos. There are lot of open problems concerning these points, see [9] or [10]. In papers [1], [2]
and [3] there are solutions to some of these problems, but there are also ones which still remain open.

Paper [1] studies some relations between distributional chaos and existence of an irregularly re-
current point. The main result shows that existence of an irregularly recurrent point does not imply
the strongest version of distributional chaos, DC1, even in the class of triangular maps.

Paper [2] answers one of the problems in [9], in particular gives counterexamples which show
that there is no connection between existence of an irregularly recurrent point and existence of an
invariant measure with support equal to the center of attraction of this point.

Paper [3] gives some properties of irregularly recurrent points and generalizes counterexamples
from [2] to systems with positive topological entropy, which solves a problem from [10].

2. Basic terminology and notation

In this section we describe basic terminology and notation, common for all three papers. We
recall other definitions, used in specific problems, in the corresponding sections.

We work with a compact metric space X with metric d and a continuous map f from X to
itself. By fn(x), where n is a nonnegative integer, we denote the n-th iteration of x under f . The
sequence {fn(x)}∞n=0, where f0(x) = x, is the forward trajectory of x under f . By ωf (x) we denote
the ω-limit set of x, which is the set of all cluster points of trajectory of x. This ω-limit set is
maximal, when it is contained in no larger ω-limit set. By ω(f) we mean the union of all ω-limit
sets of f . Minimal set of f is non-empty closed set M , such that f(M) = M and no proper subset
of M has these properties.

When defining an irregularly recurrent point, we start with the original definitions from [9]:

DEFINITION 1. A point x ∈ X is weakly almost periodic if for ∀ε > 0 ∃N > 0 such that

(1)
nN−1∑
i=0

χB(x,ε)(f
i(x)) ≥ n, ∀n > 0,

where χB(x,ε) denotes the characteristic function of the set B(x, ε) = {y ∈ X : d(x, y) < ε}.
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DEFINITION 2. A point x ∈ X is quasi-weakly almost periodic if for ∀ε > 0 ∃N > 0 and an
increasing sequence of positive integers {nj} such that

(2)
njN−1∑
i=0

χB(x,ε)(f
i(x)) ≥ nj , ∀j > 0.

The set of all weakly almost periodic points of a map f is denoted by W (f) and the set of all
quasi-weakly almost periodic points is denoted by QW (f). Clearly, by (1) and (2), W (f) ⊂ QW (f).
The notion of sets QW (f) and W (f) were introduced by Z.Zhou in 1993 (see [8]) to investigate
the structure of measure centre. Some of the problems from [9] and [10] consider points which are
quasi-weakly almost periodic, but not weakly almost periodic. For simplicity, we started to call
such points irregularly recurrent and we denote the set of all irregularly recurrent points of f by
IR(f), e.g. IR(f) = QW (f) \W (f).

In [1] - [3] we used a more convenient definition of irregularly recurrent points. For x ∈ X and
t > 0, let

Ψx(f, t) = lim inf
n→∞

1
n#{0 ≤ j < n; d(x, f j(x)) < t},(3)

Ψ∗x(f, t) = lim sup
n→∞

1
n#{0 ≤ j < n; d(x, f j(x)) < t}.(4)

Thus, Ψx(f, t) and Ψ∗x(f, t) are the lower and upper Banach density of the set {n ∈ N; fn(x) ∈
B(x, t)}, respectively. Then we define irregularly recurrent point as follows:

DEFINITION 3. Point x is quasi-weakly almost periodic, if Ψ∗x(f, t) > 0 for every t and is weakly
almost periodic, if Ψx(f, t) > 0 for every t.
Point x is irregularly recurrent, if Ψ∗x(f, t) > 0 for all t and Ψx(f, t) = 0 for at least one t.

The equivalence between original and new definition is obvious, the proof is given in [4].

We denote by R(f) the set of all recurrent points of f , and by UR(f) the set of all uniformly
recurrent points of f . Then, by definitions,

(5) UR(f) ⊆W (f) ⊆ QW (f) ⊆ R(f) ⊆ ω(f).

At last, we should recall the notations of triangular map and topological entropy. Skew-product
map X × Y −→ X × Y is a map F : (x, y) 7→ (f(x), g(x, y)) continuous with respect to the max-
metric on X×Y . In the particular case when X = Y is the unit interval I = [0, 1], F is a triangular
map.

A set A ⊂ X is (n, ε)-separated if, for any distinct points x1, x2 ∈ A, there is i (0 ≤ i < n) such
that d(f i(x1), f i(x2)) > ε. For Y ⊂ X, denote by sn(ε, Y, f) the maximum possible number of
points in an (n, ε)- separated subset of Y . Let

(6) h(f |Y ) = lim
ε→0

lim sup
n→∞

1
n

log sn(ε, Y, f).

The topological entropy of the map f is defined as h(f) = h(f |X).

3. Some properties of irregularly recurrent points

This section is based on results from [3].

Properties of quasi-weakly almost periodic points and weakly almost periodic points were studied
in some papers by Z. Zhou and other authors, while properties of irregularly recurrent points were
studied almost nowhere, although there are many open problems concerning these points, which
still remain open.
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THEOREM 1. (Cf. [3]). If f ∈ C(X), then
i) f(QW(f)) = QW(f),

ii) f(W(f)) = W(f).

COROLLARY 1. (Cf. [3]). f(IR(f)) = IR(f).

Before stating next property, let us recall some terminology. Let X with f : X → X and Y
with g : Y → Y be a compact metric spaces and continuous maps on them and let ϕ : X → Y be
continuous and surjective map such that ϕ ◦ f = g ◦ ϕ. Then (Y, g) is called a factor of a system
(X, f), and map ϕ is the corresponding factor map.

THEOREM 2. (Cf. [3]). Let (Y, g) be a factor of (X, f), via factor map ϕ. Then ϕ(QW (f)) =
QW (g), ϕ(W (f)) = W (g) and subsequently ϕ(IR(f)) = IR(g).

Part i) of the next theorem is proved in [8], but we can give simpler argument and extend it to
the part ii) of the theorem.

THEOREM 3. (Cf. [3]). If f ∈ C(X) and m ∈ N, then
i) W (f) = W (fm),

ii) QW (f) = QW (fm).

COROLLARY 2. (Cf. [3]). IR(f) = IR(fm)

4. Distributional chaos and irregular recurrence

This section is based on results from [1].

Two points x, y ∈ X are proximal, if lim infn→∞ d(fn(x), fn(y)) = 0 and they are asymptotic,
if limn→∞ d(fn(x), fn(y)) = 0. Points x, y form a Li-Yorke pair, if they are proximal, but not
asymptotic. A system (X, f) is Li-Yorke chaotic, briefly LY C, if X contains at least one Li-Yorke
pair.

For any pair x, y ∈ X and any 0 < t ≤ diam(X) let

(7) Φxy(t) = lim inf
n→∞

1
n

#{0 ≤ j < n; d(f j(x), f j(y)) < t},

(8) Φ∗xy(t) = lim sup
n→∞

1
n

#{0 ≤ j < n; d(f j(x), f j(y)) < t}.

We call Φxy and Φ∗xy the lower and upper distribution functions of x, y, respectively. Obviously,
Φxy(t) ≤ Φ∗xy(t) for any 0 < t ≤ diam(X). If Φxy(t) < Φ∗xy(t) for all t in an interval, we write
Φxy < Φ∗xy. There are three types of distributional chaos: DC1, DC2 and DC3. The conditions for
points x, y to form a distributionally chaotic pair of type 1,2 or 3 are following:

(DC1) Φ∗xy ≡ 1 and Φxy(t) = 0 for some t > 0,
(DC2) Φ∗xy ≡ 1 and Φxy < Φ∗xy,
(DC3) Φxy < Φ∗xy.

We call map f distributionally chaotic of type 1,2 or 3, if there is at least one distributionally
chaotic pair of type 1,2 or 3 in X, respectively. Straight from the definitions we can see that
DC1 =⇒ DC2 =⇒ DC3. It is also known and easy to see that DC2 =⇒ LY C. DC2 and DC3 are
also implied by positive topological entropy (see [21]), while DC1 not (see [15]). The strongest type
of chaos, DC1, was originally introduced in [17], DC2 and DC3 are its generalizations, see [15] or
[16].
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Since the definition of an irregularly recurrent point is fairly similar to the definitions of distri-
bution functions, we consider problem whether the existence of an irregularly recurrent point is
somehow related to chaos of any type.

For continuous maps on the interval all these properties (positive topological entropy, all three
types of distributional chaos and the existence of irregularly recurrent point) are equivalent. Equiv-
alence between positive topological entropy and IR(f) 6= ∅ is proved in [4]. This solves an open
problem from [9]. This result can be also extended for some more general compact metric spaces,
like topological graphs or trees, but not for all compact metric spaces.

Now we put the results for continuous maps on general compact metric space. First result is that
irregular recurrence implies LY C.

THEOREM 4. (Cf. [1]). Let f be a continuous map of a compact metric space X such that
IR(f) 6= ∅. Then f is LY C.

For stronger types of chaos the situation is not that easy.

THEOREM 5. (Cf. [1]). There is a skew-product map f of the space C× I, where C is the Cantor
set such that

i) IR(f) 6= ∅,
ii) f is DC2 but not DC1,
iii) f has zero topological entropy.

On the other hand we can show that DC1 does not imply existence of an irregularly recurrent
point. Moreover, both counterexamples can be found in the class of triangular maps.

THEOREM 6. (Cf. [1]). For triangular maps, the properties DC1 and IR(f) 6= ∅ are independent,
i.e. there is no implication between them.

This result also contributes to the problem of classification of triangular maps, which has been
formulated in the eighties by A. N. Sharkovsky (very recently, in 2012, the remaining 3 open pro-
blems by Sharkovsky were solved, see [22], [23], [24]).

There still remain two open problems, whether irregular recurrence implies DC2, or at least
DC3. The whole situation is obvious from the following graph:

Based on [21], there is following conjecture:
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CONJECTURE 1. Using similar tool as in [21], it can be proved that existence of an irregularly
recurrent point implies chaos DC2 (and subsequently DC3).

5. Irregular recurrence, invariant measures and topological entropy

This section is based on results from [2] and [3].

Let M(X, f) be the set of invariant probability measures of f on X. Measure µ is probability, if
µ(X) = 1, and µ(∅) = 0. Measure µ is invariant if for every measurable A ⊆ X, µ(f−1(A)) = µ(A).
By Sµ we denote the support of measure µ, i.e. the minimal closed set of a full measure (of µ-
measure 1 in the case of probability measures). Let Mx(f) be the set consisting of the limit points
of the sequence 1

n

∑n−1
i=0 δf i(x), where δx is the atomic probability measure on X with support {x}.

When speaking on convergence of sequences of measures we always consider the classical pointwise
convergence, so that µk → µ means µk(B) → µ(B), for every open (or equivalently, Borel) set B.
It is well-known that Mx(f) ⊆M(X, f). A set E ⊆ X is called the minimal centre of attraction of
a point x ∈ X if E is the minimal closed set such that f(E) ⊆ E and, for every ε > 0,

(9) lim
n→∞

1
n

#{i < n; f i(x) ∈ B(E, ε)} = 1,

where B(E, ε) denotes the open ε- neighbourhood of the set E (as in Section 2). We denote the
minimal centre of attraction of a point x ∈ X by Cx(f).

REMARK 1. (see [9]) It is known that for any x ∈ IR(f) there is a µ ∈Mx(f) such that Sµ 6= Cx(f)
and Mx(f) is not a singleton. On the other hand, if x ∈ R(f) \QW (f), then Sµ 6= Cx(f) for every
µ ∈Mx(f) and if x ∈W (f), then Sµ = Cx(f) for every µ ∈Mx(f).

Since W (f) ⊆ QW (f) ⊆ R(f), it is natural to ask the following:

PROBLEM 1. ([9], Open problem 4 in the second series) Let x ∈ IR(f). Is there a µ ∈ Mx(f)
such that Sµ = Cx(f)?

For quasi-weakly almost periodic points, Cx(f) = ωf (x) (see [9]). Since we consider the point x
to be irregularly recurrent (and IR(f) ⊂ QW (f)), we can re-formulate the problem in the following
way:

PROBLEM 2. Let x ∈ IR(f). Is there a µ ∈Mx(f) such that Sµ = ωf (x)?

The main result from [2] which helps to solve the posed problem is the following theorem, which
gives a characterization of points in IR(f) with the property that ωf (x) = Sµ.

THEOREM 7. (Cf. [2]). Let (X, f) be a topological dynamical system where X is a compact metric
space and z ∈ IR(f). Then there is a µ ∈ Mz(f) with support Sµ = ωf (z) if and only if there is a
sequence of positive integers m1 < m2 < ... such that, for every neighbourhood G of z,

(10) lim inf
k→∞

1
mk

#{0 ≤ j < mk; f j(z) ∈ G} > 0.

If this is the case, then every limit point of the sequence {µk}, where µk = 1
mk

∑mk−1
n=0 δfn(z) is a

measure µ ∈M(X, f) with support ωf (z).

By Remark 1, the Theorem is true also if IR(f) is replaced by R(f), i.e. it characterizes recur-
rent points with the property that ωf (x) = Sµ for som µ ∈ Mx(f). We can also show that this
classification is non-trivial.
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THEOREM 8. (Cf. [2]).
i) There is a z1 ∈ Σ2 such that z1 ∈ QW (σ) and ωσ(z1) is the support of no invariant

measure µ ∈M(Σ2, σ).
ii) There is a z2 ∈ Σ2 such that z2 ∈ IR(σ) and ωσ(z2) is the support Sµ of an invariant

measure µ ∈M(Σ2, σ).

We construct both examples in the space Σ2 = {0, 1}N, the space of all infinite sequences of zeros
and ones, with standard one-sided shift map σ. We equip this space with a metric ρ of pointwise
convergence, e.g., ρ(x, y) = 1

k , where k is the first coordinate where x and y are different. For
showing that there is a system with irregularly recurrent point which omega-limit set is support of
an invariant measure µ ∈Mx(f), we could also use skew-product map F : Q× I → Q× I, where Q
is the Cantor set from [1]. The result would follow by Theorem 7.

Subshifts constructed in [2] (and mentioned in Theorem 8) can be also used to solve another open
problem from [10], whether every subshift of (Σ2, σ) possessing an irregularly recurrent point must
have positive topological entropy. The answer to this problem is negative. In [2] there is proved
that points z1 and z2 are irregularly recurrent, so it is enough to show that topological entropy of
maps σ|ωσ(z1) and σ|ωσ(z2) is zero. We can do this easily by using the formula

(11) h(σ|ωσ(x)) = lim sup
n→∞

1
n

logPn,

where Pn denotes the number of different blocks of zeros and ones of the length n in x (see e.g. [14]).

Moreover, the subshifts from Theorem 8 can be slightly changed such that all its properties will
be preserved (it means changed points z1 and z2 will still be irregularly recurrent, for z1 there will
still be no invariant measure µ ∈ Mz1(f) such that Sµ = ωσ(z1) and for z2 there will still be an
invariant measure with this property), but topological entropy of shifts restricted to ω-limit sets of
these points will be positive.

THEOREM 9. (Cf. [3]). There are irregularly recurrent points z1, z2 ∈ Σ2 such that ωσ(z1) is and
ωσ(z2) is not the support of an invariant measure µ ∈M(Σ2, σ), but h(σ|ωσ(z1)) = h(σ|ωσ(z2)) = 0.

THEOREM 10. (Cf. [3]). There are irregularly recurrent points w1, w2 ∈ Σ2 such that ωσ(w1) is and
ωσ(w2) is not the support of an invariant measure µ ∈M(Σ2, σ), but h(σ|ωσ(w1)) > 0, h(σ|ωσ(w2)) >
0.

Theorem 9 gives the negative answer to the open problem and Theorems 9 and 10 together show
that there is no connection between positive topological entropy, irregular recurrence and existence
of an invariant measure, which support is equal to omega-limit set of the irregularly recurrent point
generating this subshift. The fact that irregular recurrence does not imply positive topological
entropy is showed in Section 4.

6. Talks at conferences

• Summer Symposium in Real Analysis XXXII, Chicago, Illinois, USA, June, 2008
Talk: Continuous maps of the interval and of the square disproving conjectures on Hausdorff
dimension and invariant measures
• 12th Czech-Slovak Workshop on Discrete Dynamical Systems, Pustevny, Czech Republic,

September, 2008
Talk: Solution of a problem by Zhou and Feng concerning invariant measures
• Summer Symposium in Real Analysis XXXIII, Durant, Oklahoma, USA, June, 2009

Talk: Distributional chaos and irregular recurrence
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• 13th Czech-Slovak Workshop on Discrete Dynamical Systems, Jeseńıky, Czech Republic,
September, 2009
Talk: Distributional chaos and irregular recurrence
• Summer Symposium in Real Analysis XXXIV, Wooster, Ohio, USA, July, 2010

Talk: Irregular recurrence in compact metric spaces
• 14th Czech-Slovak-Spanish Workshop on Discrete Dynamical Systems, La Manga del Mar

Menor, Spain, September, 2010
Talk: Irregular recurrence in compact metric spaces
• Summer Symposium in Real Analysis XXXV, Budapest, Hungary, June, 2011

Talk: Topological entropy and irregular recurrence
• 15th Czech-Slovak Workshop on discrete dynamical systems, Banská Bystrica, Slovakia,

June, 2011
Talk: Topological entropy and irregular recurrence
• International Conference on Numerical Analysis and Applied Mathematics 2011, Halkidiki,

Greece, September, 2011
Talk: Irregular recurrence in compact metric spaces
• Summer Symposium in Real Analysis XXXVI, Berks, Pennsylvania, USA, July, 2012

Talk: Counterexamples to the open problem by Zhou and Feng on minimal center of attrac-
tion
• European Conference on Iteration Theory, Ponta Delgada, Azores, Portugal, September,

2012
Talk: Counterexamples to the open problem by Zhou and Feng on minimal center of attrac-
tion
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[7] Obadalová L, Irregular recurrence in compact metric spaces, Real Analysis Exchange, Sum-
mer Symposium 2010 (2011), 1922.

7



References
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