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Matematický ústav v Opavě
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1. Introduction

The present thesis is based on two independent papers [1] and [2] which
constitute its body. The common subjects are nonlinear integrable evolu-
tion partial differential equations, their recursion operators, hierarchies of
symmetries and conservation laws.

The geometrical theory of PDEs has a long history, see e.g. [KV] for more
details. It had originated in the works by Lie [LI1, LI2, LI3], Bäcklund [BÄ],
Monge [MO], Darboux [DA], Bianchi [BI] and later by Cartan [CA]. A major
advance in this theory was made with the introduction of the notion of jet
bundles by Ehresmann [EH]; the latter provides an adequate language for
the theory in question.

In 1960s the first examples of integrable nonlinear partial differential sys-
tems were discovered [GG, MI, MG, SG, GA, KM, GK, BC, NP] and the associated
(bi-)Hamiltonian structures were found [GA, ZF, MR]. It became clear that
integrable systems possess infinite series of (possibly nonlocal) symmetries,
and, moreover, existence of infinitely many such symmetries implies integra-
bility [BL, O2, MS].

In 1977 Olver [O1] introduced the so-called recursion operators. They
are linear operators (typically pseudodifferential ones in the case of non-
linear systems) on the algebra of differential functions which map the set
of characteristics of symmetries into itself, see Sections 3 and 4 below and
references therein for details. Thus, recursion operators allow us to generate
infinite families of symmetries from a suitable seed symmetry, and hence
such operators play an important role in establishing integrability. Below
this is illustrated by the example of the Mikhailov–Novikov–Wang system
studied in our paper [1], where the existence of a recursion operator en-
abled us to construct infinite hierarchies of commuting symmetries (and of
cosymmetries as well) and therefore complete establishing integrability for
the system under study.

The notion of (generalized) symmetry was further generalized to that of a
nonlocal symmetry and this has led to the concept of a differential covering
[VK, KR], which proved to play an important role in the geometry of PDEs.
The recursion operators were subsequently interpreted in the terms of cover-
ings by Marvan [MA] (see e.g. also [GU]) as the Bäcklund autotransformations
of linearized diffieties.

In fact, integrable systems in addition to local symmetries usually possess
infinite hierarchies of (shadows of) nonlocal symmetries. It can be even ar-
gued that precisely such nonlocal hierarchies are the most common feature
of known today integrable partial differential systems in any number of inde-
pendent variables, because (nonlinearizable non-overedetermined) integrable
systems in more than two independent variables are generally believed to
admit no infinite hierarchies of local symmetries, cf. e.g. [BL] and references
therein.
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However, surprisingly enough, to date it was not known whether the cel-
ebrated Krichever–Novikov equation [KN], which is well known to be inte-
grable and possesses infinitely many local generalized symmetries and two
recursion operators, see e.g. [DS] and references therein, has any nonlocal
symmetries at all. In the second paper [2] of the present thesis we address
this open problem by constructing new infinite hierarchies of shadows of
nonlocal symmetries and cosymmetries for the Krichever–Novikov equation
using the inverse R−1

1 of the fourth-order recursion operator of the latter.
Moreover, we also tackle the problem, which was pointed out in [DS], of how
to apply the composition R2 ◦ R−1

1 , where R2 is the sixth-order recursion
operator for the Krichever–Novikov equation, to the known symmetries of
the equation in question.

The presentation in Sections 2–4 closely follows [BV, KV, MA].

2. Jet spaces

In this section we introduce the definition of jet space and review some
important geometric structures related to it. In what follows we tacitly
assume that all objects are smooth unless otherwise explicitly stated.

Consider an m-dimensional locally trivial bundle π : E → M over an
n-dimensional manifold M and denote by Γ(π) the set of all sections s :
M → E. The set Γ(π) forms a module over the algebra C∞(M) of smooth
functions on M . Recall that by definition π◦s = idM , i.e. the section s takes
a point x ∈M to some point s(x) ∈ Ex, where the set Ex = π−1(x) ⊂ E is
the so-called fiber of E over x. Note that in what follows all bundles under
consideration are tacitly assumed to be vector bundles. This means that for
each x ∈M the fiber Ex is endowed with the structure of an m-dimensional
vector space and the gluing functions are linear transformations.

Two sections s1, s2 ∈ Γ(π) are said to be k-equivalent at a point x ∈ M
if their graphs are tangent to each other with order k at the point s1(x) =
s2(x) ∈ E. The set of equivalence classes of sections will be denoted by Jkx
and called the space of k-jets of the bundle π at the point x. A point of this
space will be denoted by [s]kx. The set

Jk(π) =
⋃
x∈M

Jkx =
{

[s]kx | x ∈M, s ∈ Γ(π)
}

is called the space of k-jets of the bundle π. Moreover, we define the projec-
tions

πk : Jk(π)→M, [s]kx 7→ x

and
πk,l : Jk(π)→ J l(π), [s]kx 7→ [s]lx, k ≥ l.

Then, for any section s ∈ Γ(π) the map

jk(s) : M → Jk(π), x 7→ [s]kx
is a smooth section of πk which is called the k-jet of s.

Let U ⊂M be a coordinate neighborhood such that the bundle π becomes
trivial over U . Let x1, . . . , xn, u1, . . . , um be an adapted coordinate system
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in the bundle π over a neighborhood U of the point x ∈M . Consider the set
π−1
k (U) ⊂ Jk(π). Then the functions ujI : Jk(π)→ R, I being a multi-index,

defined by the formula

ujI([s]
k
x) =

∂|I|sj

∂(x1)i1 . . . ∂(xn)in
, j = 1, . . . ,m, |I| ≤ k

complete local coordinates x1, . . . , xn, u1, . . . , um to the local coordinates on
the set π−1

k (U). We call the coordinates ujI canonical (or special) coordinates
associated to the adapted coordinate system (xi, uj). Thus, the set Jk(π) is
endowed with a structure of a smooth manifold.

For a given bundle π one can consider all jet manifolds Jk(π), k = 0, 1, . . .,
arranging them one over another as a tower, see [BV].

Jets and projections Coordinates in jets
. . . . . .

?

πk+2,k+1

Jk+1(π) xi, uj , ujI , |I| ≤ k + 1

?

πk+1,k

Jk(π) xi, uj , ujI , |I| ≤ k

?

πk,k−1

· · · · · ·

?

π1,0

J0(π) = E xi, uj

?

π

M xi

For any point x ∈M choose a sequence of points θl ∈ J l(π), l = 0, 1, . . . ,
such that πl+1,l(θl+1) = θl and π(θ0) = x. Then one can choose a local
section s of the bundle π such that θl = [s]lx for any l. Thus the whole
sequence {θl} contains information on all partial derivatives of the section
s at x. Denote by J∞(π) the set of all such sequences. The points of the
space J∞(π) can be thought of as the equivalence classes of sections of the
bundle π tangent to each other with infinite order.

For any point θ∞ = {x, θk}k∈N ∈ J∞(π), we define π∞,k(θ∞) = θk and
π∞(θ∞) = x. Then for all k ≥ l ≥ 0 we have the equalities πk ◦ π∞,k = π∞
and πk,l ◦ π∞,k = π∞,l. Moreover, if s is a section of the bundle π then
the mapping j∞(s) : M → J∞(π) is defined by the equality j∞(s)(x) ={
x, [s]kx

}
k∈N. Then one has the following identities: π∞,k ◦ j∞(s) = jk(s)
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and π∞ ◦j∞ = idM . The section j∞(s) of the bundle π∞ is called an infinite
jet of the section s ∈ Γ(π).

Local coordinates arising in J∞(π) over a neighborhood U ⊂ M are
x1, . . . , xn together with all functions ujI , where the multi-index I is such
that |I| is of an arbitrary non-negative finite value; here and below uj0 = uj .
Thus the set J∞(π) is endowed with a structure of an infinite-dimensional
smooth manifold.

The bundle π∞ : J∞(π) → M is called the bundle of infinite jets, while
the space J∞(π) is called the manifold of infinite jets of the bundle π.

Smooth functions on J∞(π) are defined as elements of the filtered alge-
bra F(π) =

⋃
k

Fk(π), where Fk(π) = C∞(Jk(π)). Thus, in the canonical

coordinates, they are of the form f = f(x, u(k)), where x = (x1, . . . , xn) and
u(k) = {ujI | |I| ≤ k, j = 1, . . . ,m} is the finite set of the dependent variables
and their derivatives up to some finite order k. We will call such functions f
differential functions.

A tangent vector Xθ to the manifold J∞(π) at the point θ is defined as
the set {Xx, Xθk}k∈N of the tangent vectors to the manifolds M and Jk(π)
at the points x = π∞(θ) and θk = π∞,k(θ), such that (πk)∗(Xθk) = Xx and
(πk+1,k)∗(Xθk+1

) = Xθk . In the canonical coordinates on π−1
∞ (U) ⊂ J∞(π),

any tangent vector Xθ is represented as an infinite sum

(1) Xθ =
n∑
i=1

ai
∂

∂xi
+
∑
|I|≥0

m∑
j=1

ajI
∂

∂ujI
,

where ai, ajI ∈ R. We also have projections

(π∞,k)∗(Xθ) =
n∑
i=1

ai
∂

∂xi
+

k∑
|I|=0

m∑
j=1

ajI
∂

∂ujI
, (π∞)∗(Xθ) =

n∑
i=1

ai
∂

∂xi
.

A vector field on J∞(π) is defined as a (smooth) assignment X : θ 7→ Xθ,
where θ ∈ J∞(π). We will denote the set of all vector fields on J∞(π) by
X (π). Just as in the case of finite-dimensional manifolds, a vector field
X ∈ X (π) can be considered as a derivation of the algebra F(π), i.e. an
R-linear mapping X : F(π)→ F(π) such that

X(f1f2) = f1X(f2) + f2X(f1)

for all f1, f2 ∈ F(π). In the canonical coordinates, a vector field X ∈ X (π)
is represented as an infinite sum

X =
∑
i

ai
∂

∂xi
+
∑
I,j

ajI
∂

∂ujI
, ai, ajI ∈ F(π).

Definition 2.1. [BV] A vector field X ∈ X (π) is called vertical, if

X(π∗∞(f)) = 0

for any function f ∈ C∞(M).
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We denote the set of all vertical vector fields on J∞(π) by X v(π). In the
canonical coordinates, the vertical vector fields are characterized by the fact
that all their coefficients at ∂/∂xi vanish.

Denote by Λi(πk) = Λi(Jk(π)) the module of i-forms on Jk(π). We define
the module Λi(π) of i-forms on J∞(π) by the formula Λi(π) =

⋃
k

Λi(πk). In

the canonical coordinates, any form ω ∈ Λi(π) can be expressed as

ω =
∑
α+β=i

ϕ
I1,...,Iβ
i1,...,iα,j1,...,jβ

dxi1 ∧ . . . ∧ dxiα ∧ duj1I1 ∧ . . . ∧ du
jβ
Iβ
,

where |I1|, . . . , |Iβ| ≤ k and ϕ
I1,...,Iβ
i1,...,iα,j1,...,jβ

are differential functions. Note
that if we set Λ∗(π) =

⊕∞
i=0 Λi(π), then the wedge product ∧ and the

exterior derivative d are defined in the usual manner on Λ∗(π) and enjoy
their usual properties.

Let X ∈ X (π) and ω ∈ Λi(π). We define the inner product iX : Λi(π)→
Λi−1(π) by

(2) (iXω)θ = iXθkωθk .

By the definition of Λi(π), there always exists a number k such that ω ∈
Λi(πk), and we have (πk′,k)∗(Xθk′ ) = Xθk for any k′ ≥ k. Hence, the equality
iXθk′

(π∗k′,kω)θk′ = iXθkωθk holds, and thus the operation iX is well-defined
by (2).

Definition 2.2. [BV] A form ω ∈ Λ∗(π) is called horizontal if iXω = 0 for
any vertical vector field X ∈ X v(π).

We denote by Λi0(π) the space of all horizontal i-forms on J∞(π). Any
horizontal form ω is representable in the canonical coordinates as

ω =
∑

ϕi1,...,iαdx
i1 ∧ . . . ∧ dxiα ,

where ϕi1,...,iα ∈ F(π).
Let θ ∈ J∞(π). Then the graphs of all sections j∞(s), s ∈ Γ(π), that

pass through the point θ have a common n-dimensional tangent plane Cθ,
the so-called Cartan plane. The corespondence C : θ 7→ Cθ is an integrable
n-dimensional distribution on J∞(π) which is called the Cartan distribution.

For any vector field X on M there is a unique field CX on J∞(π) such
that for any section s : M → E of π and any f ∈ F(π) we have X(j∗∞(s)f) =
j∗∞(s)(CX(f)). In such a way one obtains a connection in the bundle π∞
called the Cartan connection. This connection is flat, i.e.,

(3) C[X,Y ] = [CX, CY ]

for all vector fields X,Y on M . By virtue of (3), the space CX (π) of all
vector fields lying in the Cartan distribution is a Lie subalgebra in X (π).
Vector fields belonging to CX (π) are called the Cartan fields.

In the canonical coordinate system (xi, ujI) on J∞(π), we have

C :
∂

∂xi
7→ Di =

∂

∂xi
+
∑
I,j

ujIi
∂

∂ujI
.
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The fields Di are called total derivatives and they span the Cartan distribu-
tion.

3. Differential equations

Let ∆ be a section of a finite-dimensional vector bundle ξ over J∞(π).
Then ∆ = 0 is nothing but a system E of partial differential equations
written a coordinate-free way, see e.g. [KV].

In local coordinates such a system (in n independent variables xi and m
dependent variables uj) has the form

(4) ∆s(x, u(k)) = 0, s = 1, . . . , l,

Then (4) determines a submanifold

(5) E = {θk ∈ Jk(π) | ∆1(θk) = . . . = ∆l(θk) = 0}
in the jet space Jk(π) of a vector bundle π : E → M , such that dimE =
m+n and dimM = n. For the sake of simplicity we shall call a submanifold
E an equation even though it can actually be a system of several PDEs.

Without loss of generality we assume that the projection π∞,0 : E∞ →
J0(π) is surjective, i.e. that (4) does not contain equations of zero order.
Obviously, the Cartan plane Cθ ⊂ Tθ(E∞) at every point θ ∈ E∞, so the
dimension of the Cartan distribution on a diffiety is equal to n.

We can extend (4) to a larger system

(6) DJ(∆s(x, u(k))) = 0

for all multi-indices J = (j1, . . . , jn) and s = 1, . . . , l, where DJ = Dj1
x1 ◦ . . .◦

Djn
xn . Thus (6) includes all differential consequences of (4). Consider the

submanifold E∞ defined by (6) in the jet space J∞(π). Then the (smooth)
solutions of (4) are the sections of π whose infinite jets lie in E∞. In other
words, the solutions of (4) are the maximal integral submanifolds of the Car-
tan distribution restricted to E∞. We call such a submanifold E∞ endowed
with the Cartan distribution a diffiety. A diffiety is generally of infinite
dimension. For a coordinate-free definition of E∞ see [BV].

Denote by CΛ1(E∞) the set of all Cartan forms on E∞, i.e. the set of all
one-forms on E∞ which are annihilated by vectors of the Cartan distribution
C(E) at every point θ ∈ E∞. We define the Lie R-algebra

sym E = XC(E∞)/CX (E∞),

where
CX (E∞) = {X ∈ X (E∞) | iXω = 0,∀ω ∈ CΛ1(E∞)},

and
XC(E∞) = {X ∈ X (E∞) | [X, CX (E∞)] ⊂ CX (E∞)}.

Definition 3.1. [BV] We call elements of sym E higher1 symmetries of the
equation E .

1Such symmetries are also known as generalized, see e.g. [O2].
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To describe the Lie algebra sym E in a more explicit fashion, denote by
X vC (E∞) the set of all vector fields X ∈ XC(E∞) such that X(π∗∞(f)) = 0 for
any f ∈ C∞(M). For any X ∈ XC(E∞) it is possible to find the vector field
CX ∈ CX (E∞) such that X = Xv + CX, where Xv ∈ X vC (E∞), see [BV] for
more details. Thus we have the correspondence X 7→ Xv, which determines
the mapping

(7) v : XC(E∞)→ X vC (E∞).

Lemma 3.1. [BV] The mapping v is a projector, i.e., Xv = X for every
X ∈ X vC (E∞). Moreover, ker v = CX (E∞).

It follows from Lemma 3.1 that

XC(E∞) = X vC (E∞)⊕ ker v,

and the latter equality induces an isomorphism

sym E ' X vC (E∞).

It is easily seen that the quantity (π∞,0)∗X can be identified with an
element FX ∈ Γ(π∗(π)), where π∗(π) is the pullback of π to J∞(π). The
correspondence X 7→ FX is bijective (see e.g. [KV]).

Definition 3.2. [KV, BV] The section FX ∈ Γ(π∗(π)) is called a characteris-
tic of the symmetry X, while the symmetry corresponding to a section F ∈
Γ(π∗(π)) is called an evolutionary derivation associated to F and is denoted
by EF . The quantity vF = (π∞,0)∗EF is called an evolutionary vector field.

In the canonical coordinates a section F ∈ Γ(π∗(π)) becomes a vector-
valued differential function F = (F 1(x, u(k)), . . . , Fm(x, u(k))). Then the
corresponding evolutionary derivation is

(8) EF =
∑
|I|≥0

m∑
j=1

DI(F j)
∂

∂ujI
,

and it readily follows from (8) that

(9) vF =
m∑
j=1

F j
∂

∂uj
,

It is readily seen that for any evolutionary derivations EF and EG there
exists an m-component vector function {F,G} such that

E{F,G} = [EF ,EG].

This function is called [BV] the Jacobi bracket of F and G.
Put ∆ = (∆1(x, u(k)), . . . ,∆l(x, u(k))). The Fréchet (or directional) de-

rivative or linearization of ∆ is (see e.g. [BL, KV, O2, BV]) the l ×m matrix
differential operator `∆ with entries

(`∆)ij =
∑
I,j

∂∆i

∂ujI
DI .
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Theorem 3.2. [BV] A vector-valued function U : J∞(π)→ Rm is the char-
acteristic of a higher symmetry of an equation E, i.e., of (4), if and only
if

(10) EU (∆s) = 0

for every θ∞ ∈ E∞ and s = 1, . . . , l, or equivalently

(11) `∆|E∞(U) = 0.

Moreover, the Lie algebra sym E is isomorphic to the space of solutions of
the system (11) endowed with the Jacobi bracket.

The equations (11) are called the determining equations for higher sym-
metries of E ; they express vanishing of the linearization of the system (4),
restricted to E∞, along U = (U1, . . . , Um). For coordinate-free versions of
the above theorem and of the definition of linearization cf. e.g. [BV, KV].

4. Coverings, nonlocal symmetries and recursion operators

Definition 4.1. [BV] We shall say that a covering τ : Ẽ → E∞ of the
equation E is given, if the following objects are fixed:

1. A smooth manifold Ẽ , infinite-dimensional in general.
2. An n-dimensional integrable distribution C̃ on Ẽ .
3. A regular mapping τ of the manifold Ẽ onto E∞ such that for any

point θ ∈ Ẽ the tangent mapping τ∗,θ is an isomorphism of the plane
C̃θ to the Cartan plane Cτ(θ) of the equation E∞ at the point τ(θ).

The dimension of the bundle τ is called the dimension of the corresponding
covering. It follows from the definition that the mapping τ takes any n-
dimensional integral manifold Ũ ⊂ Ẽ of the distribution C̃ = {C̃θ}θ∈eE to an
n-dimensional integral manifold U = τ(Ũ) ⊂ E∞ of the Cartan distribution
on E∞, i.e., to a solution of the equation E . Conversely, if U ⊂ E∞ is a
solution of the equation E , then the restriction of the distribution C̃ to the
inverse image Ũ = τ−1(U) ⊂ Ẽ is an integrable n-dimensional distribution.

The manifold Ẽ and the mapping τ : Ẽ → E∞ can be locally realized as
the direct product E∞×W , where W ⊆ RN is an open set, 0 < N ≤ ∞, and
as the natural projection E∞×W → E∞ respectively. Then the distribution
C̃ on Ẽ = E∞ ×W can be described by the system of vector fields

(12) D̃i = Di +
N∑
j=1

Xij
∂

∂wj
, i = 1, . . . , n,

whereXi = Xij∂/∂wj , Xij ∈ C∞(Ẽ), are τ -vertical fields on Ẽ , and w1, w2, . . .
are standard coordinates on RN .

Locally Ẽ is nothing but (6) combined with the following equations:

(13)
∂wi
∂xj

= Xji, i = 1, . . . , N, j = 1, . . . , n.
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The conditions [D̃i, D̃j ] = 0 are equivalent to the equations

(14) D̃i(Xjk) = D̃j(Xik)

for all i, j = 1, . . . , n, 1 ≤ k ≤ N , which must hold on Ẽ∞.
Relations (14) constitute a system of differential equations in functions

Xij describing all possible N -dimensional coverings over the equation E .
The coordinates wi are called nonlocal variables.

Definition 4.2. [BV] Two coverings τi : Ẽi → E∞, i = 1, 2, are called
equivalent if there exists a diffeomorphism α : Ẽ1 → Ẽ2 such that the diagram

- Ẽ2Ẽ1

E∞

α

@
@
@R

�
�
�	

τ1 τ2

is commutative and α∗(C̃1
y) = C̃2

α(y) for all points y ∈ Ẽ1.

Let τ : Ẽ → E∞ be a covering over the equation E . A nonlocal symmetry
of the equation E is by definition a local symmetry of the object Ẽ . Nonlocal
symmetries in the covering τ : Ẽ → E∞ will be called symmetries of type τ ,
or nonlocal τ -symmetries.

Definition 4.3. [BV] The Lie algebra of nonlocal τ -symmetries of the equa-
tion E is the quotient Lie algebra

symτE = XC(Ẽ)/CX (Ẽ),

where

CX (Ẽ) =

{
n∑
i=1

ϕiD̃i | ϕi ∈ C∞(Ẽ)

}
,

while XC(Ẽ) consists of vector fields X on Ẽ such that [X, CX (Ẽ)] ⊂ CX (Ẽ).

If coverings τ1 and τ2 are equivalent, then the Lie algebras of nonlocal
symmetries symτ1E and symτ2E are isomorphic [BV].

Consider a vector-valued differential function U : Ẽ → Rm and define the
evolutionary derivation associated to U on Ẽ by the formula

(15) ẼU =
∑
|I|≥0

m∑
j=1

D̃I(U j)
∂

∂ujI
.

Then ẼU is called a τ -shadow of nonlocal symmetry of E if the equality
ẼU (∆s) = 0 holds for all s = 1, . . . , l by virtue of (4), (13) and differen-
tial consequences thereof, see e.g. [KV]. Equivalently, the characteristic U
must satisfy the equation ˜̀∆|E∞(U) = 0, where ˜̀∆ is the linearization of ∆
naturally lifted to Ẽ .

In a similar fashion, the solutions of the adjoint system ˜̀∗
∆|E∞(γ) = 0 will

be called τ -shadows of nonlocal cosymmetries of E , cf. e.g. [KV].
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Theorem 4.1. [BV] Let τ : Ẽ∞ × RN → Ẽ∞ be a covering of the equation
E. Then any nonlocal τ -symmetry of E is of the form

(16) ẼU,A = ẼU +
N∑
j=1

aj
∂

∂wj
.

Here ẼU is a τ -shadow of nonlocal symmetry and A = (a1, . . . , aN ) is a
vector-valued differential function on Ẽ satisfying the equations

(17) D̃i(aj) = ẼU,A(Xij), i, j = 1 . . . , N,

where Xij are given in (12).

The coordinate-free versions of the above result and of the definition of
nonlocal symmetries and shadows can be found in [BV].

Note that the system (17) may have no solution for a given U . Thus,
not every τ -shadow of the equation E can be extended to a nonlocal τ -
symmetry in the sense of Definition 4.3. However, for any given shadow one
can construct a larger covering τ̃ where it could be lifted to a full-fledged
nonlocal symmetry, see e.g. §5.7 of [BV] and references therein for details.

A Bäcklund transformation between equations E1 and E2 is a system of
differential relations in unknown functions u1 and u2 possessing the following
property: if a function u1 is a solution of the equation E1 and u1 and u2

satisfy the relations at hand, then u2 is a solution of E2. Using the language
of coverings, this definition reads as follows.

Definition 4.4. [BV] A Bäcklund transformation between equations E1 and
E2 is the diagram

Ẽ

E∞2E∞1

@
@
@R

�
�

�	

τ2τ1

in which the mappings τ1 and τ2 are coverings.

If E∞1 = E∞2 , then the Bäcklund transformation of the equation E is called
a Bäcklund autotransformation. In the case of E∞1 = E∞2 = VE∞, where
VE∞ is the linearized version of E∞ (see e.g. [MA] for details; there the
object in question is denoted by V E), we arrive at the following definition
of the recursion operator for E .

Definition 4.5. [MA] A pair of coverings τ̃1, τ̃2 : R → VE∞ is a recursion
operator for E if the diagram
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R

VE∞VE∞

@
@
@R

�
�

�	

eτ2eτ1

@
@
@R

�
�
�	
E∞

ττ

is commutative.

From now on we shall assume the bundle π to be trivial and work solely
in the canonical local coordinates.

For instance, in the case of a (1+1)-dimensional system of evolution equa-
tions

(18)
∂~u

∂t
= ~F (x, t, ~u, ~ux, . . . , ~unx)

in two independent variables x, t and l dependent variables ui, where ~u =
(u1, . . . , ul)T , ~F = (F 1, . . . , F l)T , ~ujx = ∂j~u/∂xj , ~u0x ≡ ~u the diagram from
Definition 4.5 often has the form (cf. e.g. [S1]):

(Wj)x = ~γj · ~U (j = 1, 2, . . .)

(Wj)t =
n∑
k=1

k−1∑
m=0

(−Dx)m

( ∂ ~F

∂~ukx

)T
~γj

 ·Dk−m−1
x (~U)

~Ut = `~F (~U)
~ut = ~F

~Ut = `~F (~U)

~ut = ~F

~Vt = `~F (~V )

~ut = ~F

@
@
@R

�
�
�	

eτ2:~V=
kP
i=0

aiD
i
x(~U)+

P
j

~GjWjπ

@
@
@R

�
�

�	

~ut = ~F

ππ

(19)

where ai are l × l matrix-valued functions, · is the standard scalar product
in Rl, and the superscript T indicates the transposed matrix.

Here ~Gj and ~γj are some fixed symmetries and cosymmetries and π is the
canonical projection. Recall (see e.g. [BL]) that cosymmetries are solutions of
the determining equation which is formally adjoint to the one for symmetries.
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For (18) almost all their recursion operators known from the literature
have the form (19); the latter however is usually rewritten as

(20) R =
p∑
i=0

aiD
i
x +

q∑
j=1

~Gj ⊗D−1
x ◦ ~γj ,

Nevertheless, this approach is, in fact, somewhat inaccurate because it
does not specify the derivatives of nonlocal variables Wj with respect to t,
which may lead to incorrect results, cf. e.g. [GU]. Thus it is indeed helpful
to rewrite the recursion operator R as a Bäcklund autotransformation for
VE∞ in the sense of Definition 4.5, cf. e.g. [GU, MA].

If ai, Gj and γj in (20) are all local quantities (i.e., they are smooth func-
tions of x, t, u and of finitely many derivatives of u with respect to x, see e.g.
[MS]) then we call [MN] recursion operators of the form (20) weakly nonlocal.

Example 1. Consider the modified Korteweg–de Vries (mKdV) equation

(21) ut = 6u2ux − uxxx.

It is well known that (21) admits a weakly nonlocal recursion operator (see
e.g. [GU])

R = −D2
x + 4u2 + 4uxD−1

x · u.

The commutative diagram (19) then has the following form:

Wx = uU

Wt = −uUxx + uxUx − uxxU + 6u3U

Ut = 12uuxU + 6u2Ux − Uxxx
ut = 6u2ux − uxxx

Ut = 12uuxU + 6u2Ux − Uxxx
ut = 6u2ux − uxxx

Vt = 12uuxV + 6u2Vx − Vxxx
ut = 6u2ux − uxxx

@
@
@R

�
�
�	

eτ2:V=−Uxx+4u2U+4uxWπ

@
@
@R

�
�

�	

ut = 6u2ux − uxxx

ππ
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5. On complete integrability of the Mikhailov–Novikov–Wang
system

In the paper [1] we consider a new integrable two-component fifth-order
system of evolution equations in two independent and two dependent vari-
ables recently found by Mikhailov et al. [MC] (see also [MS]):

ut = −5
3u5 − 10vv3 − 15v1v2 + 10uu3 + 25u1u2

−6v2v1 + 6v2u1 + 12uvv1 − 12u2u1,

vt = 15v5 + 30v1v2 − 30v3u− 45v2u1 − 35v1u2

−10vu3 − 6v2v1 + 6v2u1 + 12u2v1 + 12vuu1.

(22)

Here ui = ∂iu/∂xi, vj = ∂jv/∂xj , u0 ≡ u, v0 ≡ v.
Using the so-called symbolic method Mikhailov et al. [MC] proved that

the system (22) possesses infinitely many higher symmetries of orders m ≡
1, 5 mod 6. However, no recursion operator, symplectic or (bi-)Hamiltonian
structure for (22) was known.

In [1] we have obtained the following result.

Theorem 5.1. The system (22) possesses a Hamiltonian operator

P =
(
D3
x − 6

5uDx − 3
5u1 −6

5vDx − 3
5v1

−6
5vDx − 3

5v1 3D3
x − (18

5 u+ 12
5 v)Dx − 9

5u1 − 6
5v1

)
,(23)

a symplectic operator

S =

S11 + 6
5

2∑
i=1

γ(3−i)1D
−1
x ◦ γi1 S12 + 6

5

2∑
i=1

γ(3−i)1D
−1
x ◦ γi2

S21 + 6
5γ22D

−1
x ◦ γ11 S22 + 6

5γ22D
−1
x ◦ γ12

 ,(24)

and a hereditary recursion operator R = P ◦ S that can be written as

R =

R11 +
2∑
i=1

G1iD
−1
x ◦ γi1 R12 +

2∑
i=1

G1iD
−1
x ◦ γi2

R21 +
2∑
i=1

G2iD
−1
x ◦ γi1 R22 +

2∑
i=1

G2iD
−1
x ◦ γi2

 ,(25)

where

S11 = −D3
x + 6uDx + 3u1, S12 = −6vDx + 3v1,

S21 = −6vDx − 9v1, S22 = 9D3
x − (54

5 u−
36
5 v)Dx − 27

5 u1 + 18
5 v1,

γ11 = 1, γ12 = 0, γ21 = u2 − 12
5 u

2 + 6
5v

2, γ22 = −6
5v

2 + 12
5 uv − 3v2,

R11 = D6
x − 36

5 uD
4
x − 108

5 u1D
3
x − (147

5 u2 − 324
25 u

2 + 252
25 v

2)D2
x

−(21u3 − 216
5 uu1 + 36vv1)Dx − 39

5 u4 + 738
25 uu2 − 666

25 vv2 + 621
25 u

2
1

−423
25 v

2
1 − 864

125u
3 + 864

125uv
2 − 216

125v
3,

R12 = 84
5 vD

4
x + 102

5 v1D
3
x + (63

5 v2 − 576
25 uv + 252

25 v
2)D2

x

+(21
5 v3 + 576

25 vv1 − 144
5 vu1 − 396

25 uv1)Dx − 216
125uv

2 + 432
125u

2v
+36

5 vv2 − 234
25 u2v − 18

5 uv2 − 36
5 u1v1 + 126

25 v
2
1 + 3

5v4,
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R21 = 84
5 vD

4
x + 402

5 v1D
3
x − (576

25 uv −
729
5 v2 + 252

25 v
2)D2

x

−(648
25 vu1 + 1908

25 uv1 − 657
5 v3 + 432

25 vv1)Dx + 216
125v

2u− 1782
25 uv2

−108
25 vv2 − 486

25 vu2 + 297
5 v4 + 378

25 v
2
1 + 432

125u
2v − 1656

25 u1v1,

R22 = −27D6
x + 324

5 uD4
x + (648

5 u1 − 324
5 v1)D3

x

+(252
25 v

2 − 972
25 u

2 − 486
5 v2 + 729

5 u2)D2
x

+(81u3 − 54v3 − 1944
25 uu1 + 684

25 vv1 − 648
25 vu1 + 648

25 uv1)Dx − 486
25 uu2

+432
125uv

2 − 324
25 vu2 + 324

25 uv2 + 198
25 vv2 − 54

5 v4 + 153
25 v

2
1 − 243

25 u
2
1

+81
5 u4 − 216

125v
3,

G11 = −6
5u5 − 36

5 vv3 − 54
5 v1v2 + 36

5 uu3 + 18u1u2 − 108
25 v

2v1 + 108
25 v

2u1

+216
25 uvv1 − 216

25 u
2u1,

G21 = 54
5 v5 + 108

5 v1v2 − 108
5 v3u− 162

5 v2u1 − 126
5 v1u2 − 36

5 vu3 − 108
25 v

2v1

+108
25 v

2u1 + 216
25 u

2v1 + 216
25 vuu1,

The recursion operator in the sense of Definition 4.5 can be readily ob-
tained from (25) using the formulas given in (19). For the definition and
properties of Hamiltonian and symplectic operators see e.g. [O2, BL].

The operators from Theorem 5.1 were obtained by proceeding in the spirit
of the direct approach, see e.g. [MA] for the recursion operators and [KK] for
Hamiltonian operators. The idea of the method consists in finding a few low-
order symmetries and cosymmetries and a subsequent attempt to construct
nonlocal parts of the recursion, symplectic and Hamitonian operators using
these quantities.

Denote

Q1 =
(
u1

v1

)
, Q2 = HδP0,

i.e. Q2 is a column containing the right-hand sides of (22). The recursion
operator (25) and the symmetries with the characteristics Q1 and Q2 are
readily verified to meet the requirements of Theorem 1 from [S2], and there-
fore the symmetries with the characteristics Qi,j = Rj(Qi), i = 1, 2, j =
0, 1, 2, . . ., are higher symmetries for (22) in the sense of Definition 3.1, free of
any nonlocal variables. In fact, it can be shown that for any given i and j the
characteristic Qi,j depends only on u, v, u1, v1, . . . , u1+4(i−1)+6j , v1+4(i−1)+6j .
Moreover, as the recursion operator (25) is hereditary and the symmetries
with the characteristics Q1 and Q2 commute, so do the symmetries with
characteristics Qi,j for all i = 1, 2 and all j = 0, 1, 2, . . .

It readily follows from Theorem 5.1 that the system (22) has, as usu-
ally is the case for integrable systems (see e.g. [BL]), infinite hierarchies of
compatible Hamiltonian operators Rk ◦ P and symplectic operators S ◦Rk,
k = 0, 1, 2 . . . In particular, this means that (22) is a multi-Hamiltonian
system.

While the Hamiltonian operator P is local, it is straightforward to ver-
ify that all Hamiltonian operators of the form Rk ◦ P, k = 1, 2, . . . , are
nonlocal. We conjecture that P is the only local Hamiltonian structure for
the Mikhailov–Novikov–Wang system (22). Note also that all symplectic
structures S ◦ Rk, k = 0, 1, 2, . . . , including S itself, are nonlocal.
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Furthermore, it is possible to construct two infinite sequences of conserved
functionals H1,k and H2,k given by the formula

(26) δHi,k = (R∗)k(δHi),

where

H1 = −5
3

∫
udx, H2 =

∫ (
5
6
u2

1 −
5
2
v2

1 +
4
3
u3 +

2
3
v3 − 2uv2

)
dx,

R∗ = S ◦ P is the formal adjoint of R and δ stands for the variational
derivative of a functional,

δ

∫
ρdx =

∞∑
j=0

(−Dx)j∂ρ/∂~uj

where ~uj = (uj , vj)T , cf. e.g. [O2]. It is readily seen that all functionals
Hi,k are in involution with respect to Poisson brackets associated with the
Hamiltonian structures Rs◦P for all s = 0, 1, 2, . . . . By Proposition 2 of [S2],
for all functionals Hi,k ≡

∫
ρi,kdx, i = 0, 1, 2, . . . , k = 1, 2, their densities

ρi,k defined recursively through (26) are local.
As a final remark, note that (22) can be written in the Hamiltonian form

as

(27)
(
ut
vt

)
= PδH2.

6. On nonlocal symmetries for the Krichever–Novikov
equation

In the paper [2] we consider the Krichever–Novikov (KN) equation

(28) ut = uxxx −
3
2
u2
xx

ux
+
P (u)
ux

.

Here we assume that P (u) = u3 + c1u+ c0 is a third-order polynomial in the
reduced form (i.e., without quadratic term and with the leading coefficient
equal to 1), c0, c1 ∈ R. However, using suitable fractional linear changes
of the dependent variable u ≡ u0x we can easily turn (28) into the other
known forms of the KN equation with P being a general third- or fourth-
degree polynomial in u, cf. [DS].

The KN equation first appeared in [KN] in connection with the study of
finite-gap solutions of the Kadomtsev–Petviashvili equation which has plenty
of physical applications from plasma physics to fluid dynamics, see e.g. [NP]
and references therein.

For the KN equation (28) there exist [DS, SO] two weakly nonlocal recur-
sion operators R1 and R2 of orders 4 and 6, respectively, which satisfy [DS]
the relation (elliptic curve)

(29) R2
2 = R3

1 − φR1 − θ,
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where

φ =
16
27

(
(P ′′)2 − 2P ′′′P ′ + 2P (IV )P

)
,

θ =
128
243

(
− 1

3
(P ′′)3 − 3

2
(P ′)2P (IV ) + P ′P ′′P ′′′ + 2P (IV )P ′′P − P (P ′′′)2

)
.

When written according to Definition 4.5, R1 is given by (19) with

V = R1(U) = D4
x(U) + a1D

3
x(U) + a2D

2
x(U) + a3Dx(U) + a4U

+ G1W1 + uxW2,
(30)

where G1 denotes the right-hand side of (28),

a1 = −4
uxx
ux

, a2 = −2
uxxx
ux

+ 6
u2
xx

u2
x

− 4
3
P

u2
x

,

a3 = −2
u4x

ux
+ 8

uxxuxxx
u2
x

− 6
u3
xx

u3
x

+ 4
uxx
u3
x

P − 2
3
P ′

ux
,

a4 =
u5x

ux
− 4

uxxu4x

u2
x

− 2
u2
xxx

u2
x

+ 8
u2
xxuxxx
u3
x

− 3
u4
xx

u4
x

+
4
9
P 2

u4
x

+
4
3
u2
xx

u4
x

P

− 8
3
uxx
u2
x

P ′ +
10
9
P ′′,

and γi = δρi/δu; here

ρ1 = −1
2
u2
xx

u2
x

− 1
3
P

u2
x

, ρ2 =
1
2
u2
xxx

u2
x

− 3
8
u4
xx

u4
x

+
5
6
u2
xx

u4
x

P +
1
18
P 2

u4
x

− 5
9
P ′′,

and δ/δu is the variational derivative (cf. e.g. [O2]),

δρ/δu =
∞∑
j=0

(−Dx)j∂ρ/∂ujx.

It is obvious (cf. [DS]) that the ratio R3 = R2◦R−1
1 is a recursion operator

of order two for (28). However, this operator is not weakly nonlocal in the
sense of [MN] and, as it was pointed out in [DS], it was unclear how to apply
it even to the simplest symmetries of (28), for instance to ux.

Note that for many equations it is possible to obtain the shadows of
nonlocal symmetries by applying their recursion operators to the scaling
symmetries, see e.g. [OE]. However, the KN equation (28) has no scaling
symmetry, so this approach does not work. One could also try to construct
nonlocal variables as potentials for conservation laws and subsequently look
for (shadows of) nonlocal symmetries depending on these variables, cf. e.g.
[S1] and references therein for more details; however, this method also gave
no results for the equation in question. Thus, no nonlocal symmetries (or
even shadows thereof) for (28) were known to date.
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In [2] we construct new infinite hierarchies of shadows2 of nonlocal sym-
metries and cosymmetries for (28) using the inverse R̃ of the fourth-order
recursion operator R1.

We also address in [2] the problem of how to apply the recursion operator
R3 to the known symmetries of (28).

In order to recall the results of [2], introduce the nonlocal variables pi, qi,
zi, i = 1, 2, defined by the following relations (see Appendix of [2] for the
motivation of this definition):

(31)

(p1)x = k3p
2
1 + 2k1p1 − k2, (p1)t = l3p

2
1 + 2l1p1 − l2,

(z1)x = −(k1 + p1k3), (z1)t = −(l1 + p1l3),

(q1)x = −k3 exp(−2z1), (q1)t = −l3 exp(−2z1),

(p2)x = −k3p
2
2 − 2k1p2 + k2, (p2)t = − (l3 −m) p2

2

−
(

4u2

3ux
+ 2l1

)
p2 −

2c1

3ux
+ l2,

(z2)x = (k1 + p2k3), (z2)t = l1 +
2u2

3ux
+ p2 (l3 −m) ,

(q2)x = k3 exp(−2z2), (q2)t = (l3 −m) exp(−2z2).

Here

(32)

k1 = −
√

6(c1u+ 2c0)
12
√
c0ux

, k2 =
√

6c1u

12
√
c0ux

,

k3 =
√

6u(4c0u− c2
1)

12c1
√
c0ux

, m =
2(c2

1 − 8c0u− 2c1u
2)

3c1ux
,

l1 = −
√

6
72
√
c0u3

x

(−6c1uuxuxxx − 12c0uxuxxx + 3c1uu
2
xx + 6c0u

2
xx

+ 12c1u
2
xuxx + 4

√
6
√
c0u

2u2
x − 2c1u

4 − 4c0u
3 − 2c2

1u
2

− 6c0c1u− 4c2
0),

l2 =
√

6c1

72
√
c0u3

x

(−6uuxuxxx + 3uu2
xx + 12u2

xuxx + 4
√

6
√
c0u

2
x − 2u4

− 2c1u
2 − 2c0u),

l3 = −
√

6
72c1
√
c0u3

x

(−6c2
1uuxuxxx + 24c0u

2uxuxxx + 3c2
1uu

2
xx

− 12c0u
2u2
xx + 12c2

1u
2
xuxx − 96c0uu

2
xuxx + 96c0u

4
x − 4

√
6
√
c0c

2
1u

2
x

+ 32
√

6c
3
2
0 uu

2
x + 8

√
6
√
c0c1u

2u2
x + 8c0u

5 − 2c2
1u

4 + 8c0c1u
3

− 2c3
1u

2 + 8c2
0u

2 − 2c0c
2
1u).

2The terminology used in [2] is slightly different in that in order to streamline the
presentation the shadows were referred to as nonlocal (co)symmetries, as it is often done
in the literature (cf. e.g. [BL, OE]).
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Geometrically, equations (31) define a six-dimensional covering over (28).
Now define the quantities Vi and γi, i = 1, 2, . . . , 6, as follows:

V1 =
c1u+ 2c0

2c0
+

1
4c1c0

2∑
i=1

[
((c2

1 − 4c0u)up2
i + 2c1(c1u+ 2c0)pi

+c2
1u)(qi − 1) exp(2zi) + u(c2

1 − 4c0u)pi
]
,

V2 = − 1
2c2

1

2∑
i=1

((c2
1 − 4c0u)up2

i + 2c1(c1u+ 2c0)pi + c2
1u) exp(2zi),

V3 =
√

6
8c2

1

√
c0

2∑
i=1

(−1)i−1((c2
1 − 4c0u)up2

i + 2c1(c1u+ 2c0)pi + c2
1u) exp(2zi),

V4 = −
√

6
64
√
c3

0

2∑
i=1

(−1)i−1
[
((c2

1 − 4c0u)up2
i + 2c1(c1u+ 2c0)pi

+c2
1u)(qi − 1)2 exp(2zi) + u(c2

1 − 4c0u) exp(−2zi)

+2u(c2
1 − 4c0u)pi(qi − 1) + 2c1(c1u+ 2c0)qi

]
,

V5 = − 1
32c0

2∑
i=1

[
((c2

1 − 4c0u)up2
i + 2c1(c1u+ 2c0)pi + c2

1u)(q2
i − 1) exp(2zi)

+u(c2
1 − 4c0u) exp(−2zi) + 2u(c2

1 − 4c0u)piqi + 2c1(c1u+ 2c0)qi
]
,

V6 =
√

6
16c1
√
c0

2∑
i=1

(−1)i−1
[
((c2

1 − 4c0u)up2
i + 2c1(c1u+ 2c0)pi

+c2
1u)qi exp(2zi) + u(c2

1 − 4c0u)pi
]
,

γ1 =
√

6
16c1
√
c0u3

x

2∑
i=1

(−1)i−1
{[

((c2
1 − 4c0u)up2

i + 2c1(c1u+ 2c0)pi + c2
1u)uxx

+((8c0u− c2
1)p2

i − 2c2
1pi − c2

1)u2
x

]
qi exp(2zi)

+
[
(8c0u− c2

1)u2
x + (c2

1 − 4c0u)uuxx
]
pi
}
,

γ2 =
√

6
64
√
c3

0u
3
x

2∑
i=1

(−1)i−1
{[

((c2
1 − 4c0u)up2

i + 2c1(c1u+ 2c0)pi + c2
1u)uxx

+((8c0u− c2
1)p2

i − 2c2
1pi − c2

1)u2
x

]
(qi − 1)2 exp(2zi)

+
[
(8c0u− c2

1)u2
x + (c2

1 − 4c0u)uuxx
]

exp(−2zi) + 2
[
(8c0u− c2

1)u2
x

+(c2
1 − 4c0u)uuxx

]
pi(qi − 1) + 2c1

[
(2c0 + c1u)uxx − c1u

2
x

]
qi
}
,

γ3 = − 1
16c0u3

x

2∑
i=1

{[
((c2

1 − 4c0u)up2
i + 2c1(c1u+ 2c0)pi + c2

1u)uxx

+((8c0u− c2
1)p2

i − 2c2
1pi − c2

1)u2
x

]
(q2
i − 1) exp(2zi)

+
[
(8c0u− c2

1)u2
x + (c2

1 − 4c0u)uuxx
]

exp(−2zi) + 2
[
(8c0u− c2

1)u2
x

+(c2
1 − 4c0u)uuxx

]
piqi + 2c1

[
(2c0 + c1u)uxx − c1u

2
x

]
qi
}
,
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γ4 =
1

2c2
1u

3
x

2∑
i=1

[
((c2

1 − 4c0u)up2
i + 2c1(c1u+ 2c0)pi + c2

1u)uxx

+((8c0u− c2
1)p2

i − 2c2
1pi − c2

1)u2
x

]
exp(2zi),

γ5 =
√

6
4c2

1

√
c0u3

x

2∑
i=1

(−1)i−1
[
((c2

1 − 4c0u)up2
i + 2c1(c1u+ 2c0)pi + c2

1u)uxx

+((8c0u− c2
1)p2

i − 2c2
1pi − c2

1)u2
x

]
exp(2zi),

γ6 =
(2c0 + c1u)uxx − c1u

2
x

2c0u3
x

+
1

4c1c0u3
x

2∑
i=1

{[
((c2

1 − 4c0u)up2
i + 2c1(c1u+ 2c0)pi

+c2
1u)uxx + ((8c0u− c2

1)p2
i − 2c2

1pi − c2
1)u2

x

]
(qi − 1) exp(2zi)

+
[
(8c0u− c2

1)u2
x + (c2

1 − 4c0u)uuxx
]
pi
}
.

It turns out that the following assertions hold [2].

Proposition 6.1. The quantities Vi (resp. γi), i = 1, . . . , 6, are shadows
of nonlocal symmetries (resp. nonlocal cosymmetries) for the KN equation
(28) with respect to the covering (31).

Theorem 6.2. The KN equation (28) possesses a recursion operator R̃
whose action on a symmetry U (or, more broadly, on a shadow of nonlocal
symmetry) of (28) is given by the formula

(33) R̃(U) = (S−1~Ω)1 ≡
6∑

k=1

(S−1)1kΩk,

where ~Ω is a vector of nonlocal variables defined by the relations

(34) ~Ωx = SM1U, ~Ωt = SM2U.

Furthermore, R̃ is the inverse of the fourth-order recursion operator R1

written in the form (30), that is, modulo arbitrary integration constants
arising from the definition of the nonlocal variables Wi and ~Ω we have that

R̃(R1(U)) = R1(R̃(U)) = U.

The matrices M1 and M2 in Theorem 6.2 have the forms

M1 =


0
0
0
1
0
0

 , M2 =



0
1

Dx +
uxx
ux

D2
x +

uxx
ux

Dx +
6uxuxxx + 3u2

xx + 2P
6u2

x
0
0


,

while the matrix S is given by the formula

S = exp(q2Y2)·exp(z2H2)·exp(p2X2)·exp(q1Y1)·exp(z1H1)·exp(p1X1)·S(0),
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where

X1 =



1
2c0

c1
−
√

6c0

2c1

√
6c1

16
√
c0

−c1

8
0

− c1

4c0
−1

√
6

4
√
c0

0
c2

1

16c0

√
6c1

16
√
c0√

6c1

6
√
c0

0 0
c2

1

8c0
0

c1

4
4
√

6c0

3c1
0 0 1 0

2c0

c1

4
c1

0 0
√

6
2
√
c0

0
√

6c0

c1

0
4
√

6c0

3c1
− 2
c1

− c1

4c0
−
√

6c1

12
√
c0

−1



,

Y1 =



0 0 0
√

6c1

16
√
c0

c1

8
0

c1

4c0
0 0 0 − c2

1

16c0

√
6c1

16
√
c0

−
√

6c1

6
√
c0

0 0 − c2
1

8c0
0 −c1

4
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
c1

4c0

√
6c1

12
√
c0

0


,

H1 =



0 0 0 0 0 0

− c1

2c0
−1

√
6

4
√
c0

0
c2

1

8c0
0

√
6c1

3
√
c0

2
√

6c0

3
−1

c2
1

4c0
0 0

0 0 0 1
√

6c0

3
0

0 0 0
√

6
2
√
c0

1 0

0 0 0 − c1

2c0
−
√

6c1

6
√
c0

0



,
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X2 =



1
2c0

c1

√
6c0

2c1
−
√

6c1

16
√
c0

−c1

8
0

− c1

4c0
−1 −

√
6

4
√
c0

0
c2

1

16c0
−
√

6c1

16
√
c0

−
√

6c1

6
√
c0

0 0
c2

1

8c0
0

c1

4

−4
√

6c0

3c1
0 0 1 0

2c0

c1

4
c1

0 0 −
√

6
2
√
c0

0 −
√

6c0

c1

0 −4
√

6c0

3c1
− 2
c1

− c1

4c0

√
6c1

12
√
c0

−1



,

Y2 =



0 0 0 −
√

6c1

16
√
c0

c1

8
0

c1

4c0
0 0 0 − c2

1

16c0
−
√

6c1

16
√
c0√

6c1

6
√
c0

0 0 − c2
1

8c0
0 −c1

4
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
c1

4c0
−
√

6c1

12
√
c0

0


,

H2 =



0 0 0 0 0 0

− c1

2c0
−1 −

√
6

4
√
c0

0
c2

1

8c0
0

−
√

6c1

3
√
c0
−2
√

6c0

3
−1

c2
1

4c0
0 0

0 0 0 1 −
√

6c0

3
0

0 0 0 −
√

6
2
√
c0

1 0

0 0 0 − c1

2c0

√
6c1

6
√
c0

0



,
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and

S(0) =



S
(0)
11 − u

ux

1
4
u2

u2
x

0 −1
4
u2

ux
0

S
(0)
21 − 1

ux

1
2
u

u2
x

0 −1
2
u

ux
0

S
(0)
31 S

(0)
32 S

(0)
33

1
2
u2uxx
u3
x

− u

ux
S

(0)
35 −1

2
u2

ux

S
(0)
41 S

(0)
42 S

(0)
43

uuxx
u3
x

− 1
ux

S
(0)
45 − u

ux

S
(0)
51 0

1
u2
x

0 − 1
ux

0

S
(0)
61 S

(0)
62 −uxxx

u3
x

− u2
xx

u4
x

uxx
u3
x

1
2
u2
xx

u3
x

− 1
3u3

x

P − 1
ux



,

where

S
(0)
11 = −1

4
u2uxxx
u3
x

+
1
4
u2u2

xx

u4
x

−1
6
u2

u4
x

P+1, S
(0)
21 = −1

2
uuxxx
u3
x

+
1
2
uu2

xx

u4
x

−1
3
u

u4
x

P,

S
(0)
31 =

2u2uxuxxx − 4u2u2
xx − 2uu2

xuxx + 2u4
x

3u6
x

P +
1
6
u(5uuxx − 2u2

x)
u4
x

P ′

− 5
18
u2

u2
x

P ′′ − 1
2
u2u5x

u3
x

+ 2
u2uxxu4x

u4
x

+
3
2
u2u2

xxx

u4
x

− (5u2u2
xx + uu2

xuxx − u4
x)uxxx

u5
x

+
(uuxx + u2

x)(2uuxx − u2
x)u2

xx

u6
x

,

S
(0)
32 = −2u(uuxx − u2

x)
3u5

x

P +
u2

6u3
x

P ′ +
1
2
u2u4x

u3
x

+
1
2

(−3uuxx + 2u2
x)uuxxx

u4
x

− (uuxx + u2
x)(−uuxx + 2u2

x)uxx
u5
x

,

S
(0)
33 = −1

2
u2uxxx
u3
x

−1
2
u2u2

xx

u4
x

+2
uuxx
u2
x

+1, S
(0)
35 =

1
4
u2u2

xx

u3
x

−uuxx
ux

+ux−
1
6
Pu2

u3
x

,

S
(0)
41 =

4uuxuxxx − 8uu2
xx − 2u2

xuxx
3u6

x

P +
5uuxx − u2

x

3u4
x

P ′ − 5u
9u2

x

P ′′ − uu5x

u3
x

+ 4
uuxxu4x

u4
x

+ 3
uu2

xxx

u4
x

− (10uuxx + u2
x)uxxuxxx

u5
x

+
(4uuxx + u2

x)u3
xx

u6
x

,

S
(0)
42 =

1
3
−4uuxx + 2u2

x

u5
x

P +
1
3
u

u3
x

P ′ +
uu4x

u3
x

+
(−3uuxx + u2

x)uxxx
u4
x

− (−2uuxx + u2
x)u2

xx

u5
x

,

S
(0)
43 = −uuxxx

u3
x

− uu2
xx

u4
x

+ 2
uxx
u2
x

, S
(0)
45 =

uu2
xx

2u3
x

− uxx
ux
− u

3u3
x

P,
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S
(0)
51 = −uxxx

u3
x

+
u2
xx

u4
x

− 2
3u4

x

P,

S
(0)
61 =

4uxuxxx − 8u2
xx

3u6
x

P+
5
3
uxx
u4
x

P ′− 5
9u2

x

P ′′−u5x

u3
x

+4
uxxu4x

u4
x

+3
u2
xxx

u4
x

−10
u2
xxuxxx
u5
x

+4
u4
xx

u6
x

,

S
(0)
62 = −4

3
uxx
u5
x

P +
1

3u3
x

P ′ +
u4x

u3
x

− 3
uxxuxxx
u4
x

+ 2
u3
xx

u5
x

.

Let us also mention that R̃ can be formally written in the pseudodiffer-
ential form (cf. e.g. [DS, O2]) as

(35) R̃ =
6∑
i=1

Vi D
−1
x ◦ γi,

where Vi and γi are shadows of nonlocal symmetries and cosymmetries for
(28), see above.

Using Theorem 6.2 we can enhance the result of Proposition 6.1 as follows:

Proposition 6.3. The quantities V
(j)
i = R̃j(Vi) (resp. (R̃?)j(γi)), i =

1, . . . , 6, are shadows of nonlocal symmetries (resp. of nonlocal cosymme-
tries) for the KN equation (28) for all j = 0, 1, 2, . . . .

Here R̃? is the formal adjoint of R̃; in the pseudodifferential form we can
write R̃? = −

∑6
i=1 γi D

−1
x ◦ Vi; the correct definition of such an operator is

given in analogy with Definition 4.5 with V E∞ replaced by the dual object,
the so-called cotangent covering over E , see e.g. [KV] for details.

As a final remark, note that it is possible to construct two hierarchies
of highly nonlocal Hamiltonian structures for (28) of the form R̃j ◦ Hi,
j = 1, 2, . . . , i = 0, 2, where H0 = uxD

−1
x ◦ux and H2 = R2 ◦H0, cf. [DS, SO].
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