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1. INTRODUCTION

The present thesis is based on two independent papers [1] and [2] which
constitute its body. The common subjects are nonlinear integrable evolu-
tion partial differential equations, their recursion operators, hierarchies of
symmetries and conservation laws.

The geometrical theory of PDEs has a long history, see e.g. [Kv] for more
details. It had originated in the works by Lie [LI1, LI2, L13], Bicklund [BA],
Monge [MO], Darboux [pA], Bianchi [BI] and later by Cartan [cA]. A major
advance in this theory was made with the introduction of the notion of jet
bundles by Ehresmann [EH]; the latter provides an adequate language for
the theory in question.

In 1960s the first examples of integrable nonlinear partial differential sys-
tems were discovered [GG, MI, MG, SG, GA, KM, GK, BC, NP| and the associated
(bi-)Hamiltonian structures were found [GA, zF, MR]. It became clear that
integrable systems possess infinite series of (possibly nonlocal) symmetries,
and, moreover, existence of infinitely many such symmetries implies integra-
bility [BL, 02, Ms].

In 1977 Olver [01] introduced the so-called recursion operators. They
are linear operators (typically pseudodifferential ones in the case of non-
linear systems) on the algebra of differential functions which map the set
of characteristics of symmetries into itself, see Sections 3 and 4 below and
references therein for details. Thus, recursion operators allow us to generate
infinite families of symmetries from a suitable seed symmetry, and hence
such operators play an important role in establishing integrability. Below
this is illustrated by the example of the Mikhailov—Novikov—Wang system
studied in our paper [1], where the existence of a recursion operator en-
abled us to construct infinite hierarchies of commuting symmetries (and of
cosymmetries as well) and therefore complete establishing integrability for
the system under study.

The notion of (generalized) symmetry was further generalized to that of a
nonlocal symmetry and this has led to the concept of a differential covering
[VK, KR], which proved to play an important role in the geometry of PDEs.
The recursion operators were subsequently interpreted in the terms of cover-
ings by Marvan [MA] (see e.g. also [GU]) as the Béacklund autotransformations
of linearized diffieties.

In fact, integrable systems in addition to local symmetries usually possess
infinite hierarchies of (shadows of) nonlocal symmetries. It can be even ar-
gued that precisely such nonlocal hierarchies are the most common feature
of known today integrable partial differential systems in any number of inde-
pendent variables, because (nonlinearizable non-overedetermined) integrable
systems in more than two independent variables are generally believed to
admit no infinite hierarchies of local symmetries, cf. e.g. [BL] and references
therein.
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However, surprisingly enough, to date it was not known whether the cel-
ebrated Krichever—Novikov equation [KN|, which is well known to be inte-
grable and possesses infinitely many local generalized symmetries and two
recursion operators, see e.g. [DS] and references therein, has any nonlocal
symmetries at all. In the second paper [2] of the present thesis we address
this open problem by constructing new infinite hierarchies of shadows of
nonlocal symmetries and cosymmetries for the Krichever—Novikov equation
using the inverse Rl_l of the fourth-order recursion operator of the latter.
Moreover, we also tackle the problem, which was pointed out in [Ds], of how
to apply the composition Ry o ’Rl_l, where Rs is the sixth-order recursion
operator for the Krichever—Novikov equation, to the known symmetries of
the equation in question.

The presentation in Sections 2—4 closely follows [BV, KV, MA].

2. JET SPACES

In this section we introduce the definition of jet space and review some
important geometric structures related to it. In what follows we tacitly
assume that all objects are smooth unless otherwise explicitly stated.

Consider an m-dimensional locally trivial bundle # : £ — M over an
n-dimensional manifold M and denote by I'(w) the set of all sections s :
M — E. The set I'(m) forms a module over the algebra C°°(M) of smooth
functions on M. Recall that by definition mos = idy, i.e. the section s takes
a point & € M to some point s(x) € E,, where the set F, = 7~ 1(z) C E is
the so-called fiber of ¥ over x. Note that in what follows all bundles under
consideration are tacitly assumed to be vector bundles. This means that for
each x € M the fiber E, is endowed with the structure of an m-dimensional
vector space and the gluing functions are linear transformations.

Two sections s, s2 € I'(m) are said to be k-equivalent at a point x € M
if their graphs are tangent to each other with order k at the point s;(x) =
sa(z) € E. The set of equivalence classes of sections will be denoted by J¥
and called the space of k-jets of the bundle 7 at the point x. A point of this
space will be denoted by [s]*. The set

Trry = | JE = {[s]gz |zeM,se F(Tr)}
rxeM

is called the space of k-jets of the bundle m. Moreover, we define the projec-
tions

s JE(m) — M, [s]F — z
and
T JE () — J(m), [s]% — [s]}, k>
Then, for any section s € I'(7) the map
Ji(s) : M — J*(m), z v [s]y

is a smooth section of 7 which is called the k-jet of s.
Let U C M be a coordinate neighborhood such that the bundle m becomes
trivial over Y. Let z',..., 2™, u!,... , u™ be an adapted coordinate system
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in the bundle 7 over a neighborhood U of the point x € M. Consider the set
7. (U) C J*(r). Then the functions u} : J¥(7) — R, I being a multi-index,
defined by the formula

up([s)%) = - . j=1,...m, | <k

complete local coordinates z!, ..., z", ul, ..., u™ to the local coordinates on
the set 77,;1(2/{ ). We call the coordinates u} canonical (or special) coordinates
associated to the adapted coordinate system (2%, u’). Thus, the set J*(7) is
endowed with a structure of a smooth manifold.

For a given bundle 7 one can consider all jet manifolds J*(r), k = 0,1,. ..,
arranging them one over another as a tower, see [BV].

Jets and projections Coordinates in jets
Tk42,k+1
Y
JF () ol |1 < k+1
Tk41,k
Y
J¥(r) o, 1] < K
Thk,k—1
Y
1,0
Y
Jo(r)=FE b u!
™
Y
M x

For any point x € M choose a sequence of points 0; € Jl(ﬂ'), [=0,1,...,
such that m41,(6;41) = 6; and 7(6y) = x. Then one can choose a local
section s of the bundle 7 such that 6 = [s]} for any /. Thus the whole
sequence {0;} contains information on all partial derivatives of the section
s at x. Denote by J°°(m) the set of all such sequences. The points of the
space J°°(7) can be thought of as the equivalence classes of sections of the
bundle 7 tangent to each other with infinite order.

For any point 6o, = {z,0k},cny € J(), we define moo 1 (0so) = 0 and
Too(foo) = x. Then for all £ > [ > 0 we have the equalities 7 0 Too k = oo
and T 0 Too ) = Tooy. Moreover, if s is a section of the bundle 7 then
the mapping joo(s) : M — J°°(m) is defined by the equality joo(s)(xz) =
{m, [S]];}keN' Then one has the following identities: ook © joo(S) = Ji(s)
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and Ty 0 joo = idps. The section joo(s) of the bundle 74, is called an infinite
jet of the section s € T'(r).
Local coordinates arising in J°°(m) over a neighborhood U C M are

xl, ... 2" together with all functions u]I, where the multi-index [ is such

that |I| is of an arbitrary non-negative finite value; here and below u} = u/.
Thus the set J*°(7) is endowed with a structure of an infinite-dimensional
smooth manifold.
The bundle 7 : J®(7w) — M is called the bundle of infinite jets, while
the space J*°(m) is called the manifold of infinite jets of the bundle 7.
Smooth functions on J*°(7) are defined as elements of the filtered alge-
bra F(r) = |JFr(r), where Fi(r) = C*(J*(r)). Thus, in the canonical
k

coordinates, they are of the form f = f(z,u®), where z = (z!,...,2") and

¥ = {u}||I| < k,j =1,...,m} is the finite set of the dependent variables
and their derivatives up to some finite order k. We will call such functions f
differential functions.

A tangent vector Xy to the manifold J*°(m) at the point 6 is defined as
the set {X,, Xp, }ren of the tangent vectors to the manifolds M and J*(r)
at the points © = 7 (0) and 0 = 7 1 (), such that (7). (ng) X, and
(Tht1,k)+(X0,.,) = Xo,- In the canonical coordinates on w3} (U) C J>(),
any tangent vector Xy is represented as an infinite sum

(1) Xy =

‘]7
i=1 |1]>0 j=1 8

where a', ajj € R. We also have projections

(7Too k)%

(o) (X0) = Y0
=1

A wvector field on J*°(r) is defined as a (smooth) assignment X : § — Xy,
where 6 € J*°(m). We will denote the set of all vector fields on J*(m) by
X(m). Just as in the case of finite-dimensional manifolds, a vector field
X € X(m) can be considered as a derivation of the algebra F(m), i.e. an
R-linear mapping X : F(m) — F () such that

X(f1f2) = L X(f2) + f2X(f1)

for all fi, fa € F(w). In the canonical coordinates, a vector field X € X ()
is represented as an infinite sum

R i 9 i i
X—;aaxi+lzja16#, a',a; € F(m).

Definition 2.1. [BV] A vector field X € X(x) is called vertical, if
X(m5(f)) =0

[7]=0j=1

for any function f € C*°(M).
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We denote the set of all vertical vector fields on J*°(7) by X¥(w). In the
canonical coordinates, the vertical vector fields are characterized by the fact
that all their coefficients at 9/dz" vanish.

Denote by A’(m,) = AY(J*(7)) the module of i-forms on J* (7). We define
the module A?(7) of i-forms on J°°(7) by the formula A’(7) = |J A (7). In

k

the canonical coordinates, any form w € A%(7) can be expressed as

o Il,...,l/g i1 Ta J1 jﬁ
w= E wil,...,ia,jh...,jgdx A...Ndx /\aluI1 /\.../\duIB,
a+pB=i

where |I1|,...|Is| < k and @777
that if we set A*(m) = @i, A'(n), then the wedge product A and the
exterior derivative d are defined in the usual manner on A*(7) and enjoy
their usual properties.

Let X € X(n) and w € A(7). We define the inner product ix : A'(mw) —
A=) by

(2) (ixw)e = ix,, wo,-

are differential functions. Note

By the definition of Ai(7), there always exists a number k such that w €
A*(7y), and we have (7 1)«(Xp,,) = Xp, for any & > k. Hence, the equality
iXek/ (WZ,’kw)gk, = ix,, wp, holds, and thus the operation iy is well-defined

by (2).
Definition 2.2. [BV] A form w € A*(7) is called horizontal if ixw = 0 for
any vertical vector field X € X"(w).

We denote by A}(m) the space of all horizontal i-forms on J° (7). Any
horizontal form w is representable in the canonical coordinates as

w= Z%l,...,iadibil A Adate

where @i, . € F(r).

Let 6§ € J°°(w). Then the graphs of all sections jo(s),s € I'(w), that
pass through the point # have a common n-dimensional tangent plane Cy,
the so-called Cartan plane. The corespondence C : 6 — Cy is an integrable
n-dimensional distribution on J*°(7) which is called the Cartan distribution.

For any vector field X on M there is a unique field CX on J°°(7) such
that for any section s : M — E of m and any f € F(w) we have X (5 (s)f) =
Ja(s)(CX(f)). In such a way one obtains a connection in the bundle 7o,
called the Cartan connection. This connection is flat, i.e.,

(3) CIX,Y] = [CX,CY]

for all vector fields X,Y on M. By virtue of (3), the space CX(m) of all
vector fields lying in the Cartan distribution is a Lie subalgebra in X(m).

Vector fields belonging to CX () are called the Cartan fields.

In the canonical coordinate system (2%, u’) on J*(7), we have

9 9 ;0
C: Bt HDZ_W—'_;uIiM'
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The fields D; are called total derivatives and they span the Cartan distribu-
tion.

3. DIFFERENTIAL EQUATIONS

Let A be a section of a finite-dimensional vector bundle & over J*(m).
Then A = 0 is nothing but a system &£ of partial differential equations
written a coordinate-free way, see e.g. [KV].

In local coordinates such a system (in n independent variables z* and m
dependent variables u/) has the form

(4) Ag(z,u®y =0, s=1,...,1,
Then (4) determines a submanifold
(5) E={0cJFm) | A1(Br) = ... = Ay(6) = 0}

in the jet space J*() of a vector bundle 7 : E — M, such that dim E =
m+n and dim M = n. For the sake of simplicity we shall call a submanifold
& an equation even though it can actually be a system of several PDEs.

Without loss of generality we assume that the projection 7o : £ —
JO(7) is surjective, i.e. that (4) does not contain equations of zero order.
Obviously, the Cartan plane Cy C Tp(E>°) at every point 6 € £, so the
dimension of the Cartan distribution on a diffiety is equal to n.

We can extend (4) to a larger system
(6) Dy(A(z,uM)) =0
for all multi-indices J = (j1,...,jn) and s = 1,...,l, where Dj = Dill 0...0
D2%. Thus (6) includes all differential consequences of (4). Consider the
submanifold £ defined by (6) in the jet space J°°(m). Then the (smooth)
solutions of (4) are the sections of m whose infinite jets lie in £*°. In other
words, the solutions of (4) are the maximal integral submanifolds of the Car-
tan distribution restricted to £>°. We call such a submanifold £*° endowed
with the Cartan distribution a diffiety. A diffiety is generally of infinite
dimension. For a coordinate-free definition of £ see [BV].

Denote by CAL(E%°) the set of all Cartan forms on £, i.e. the set of all

one-forms on £*° which are annihilated by vectors of the Cartan distribution
C(€) at every point 6 € £°. We define the Lie R-algebra

sym& = Xe(E%)/CX(E™),
where
CX(EX) ={X € X(E%)|ixw = 0,Yw € CAL(£)},
and
Xe(E%) = {X € X(E%)|[X,CX(E™)] C CX(E®)}.
Definition 3.1. [Bv] We call elements of sym & higher' symmetries of the
equation &.

ISuch symmetries are also known as generalized, see e.g. [02].



14

To describe the Lie algebra sym £ in a more explicit fashion, denote by
X5 (E%) the set of all vector fields X € &¢(£°°) such that X (7% (f)) = 0 for
any f € C®(M). For any X € X¢(€%) it is possible to find the vector field
CX € CX(E®) such that X = X" + CX, where XV € AF(E%), see [BV] for
more details. Thus we have the correspondence X — X which determines
the mapping

(7) v Xe(EF) — XF(E™).

Lemma 3.1. [BV] The mapping v is a projector, i.e., XU = X for every
X € XF(E%). Moreover, kerv = CX(E™).

It follows from Lemma 3.1 that
Xe(E%°) = XF(E%°) @ kerv,
and the latter equality induces an isomorphism
sym& ~ X (EX).

It is easily seen that the quantity (7. 0)«X can be identified with an
element F'x € I'(n*(m)), where 7*(m) is the pullback of 7 to J*°(m). The
correspondence X — Fly is bijective (see e.g. [KV]).

Definition 3.2. [Kv, BV] The section Fx € I'(r*(n)) is called a characteris-
tic of the symmetry X, while the symmetry corresponding to a section F' €
I'(7*(m)) is called an evolutionary derivation associated to F' and is denoted
by Er. The quantity vi = (7x0)«Er is called an evolutionary vector field.

In the canonical coordinates a section F' € I'(m* (7)) becomes a vector-
valued differential function F = (F'(z,u®), ... F™(z,u®)). Then the
corresponding evolutionary derivation is

(8) Er= ZDI(Fﬂ‘)aaj,
uy

[1]>0 j=1

and it readily follows from (8) that

9
(9) ve=) Floo,

j=1
It is readily seen that for any evolutionary derivations Er and Eg there
exists an m-component vector function {F, G} such that

E(rc = [Er, Egl.
This function is called [BV] the Jacobi bracket of F' and G.
Put A = (Ay(z,u®), ... Aj(z,u®))). The Fréchet (or directional) de-
rivative or linearization of A is (see e.g. [BL, KV, 02, BV]) the [ X m matrix
differential operator o with entries

o0A;
(ZA)ij = Z D[.

i
15 v
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Theorem 3.2. [BV] A vector-valued function U : J*(m) — R™ is the char-
acteristic of a higher symmetry of an equation &, i.e., of (4), if and only

if

(10) Ey(A;) =0
for every O € E° and s =1,...,1, or equivalently
(11) Ualge=(U) = 0.

Moreover, the Lie algebra sym & is isomorphic to the space of solutions of
the system (11) endowed with the Jacobi bracket.

The equations (11) are called the determining equations for higher sym-
metries of £; they express vanishing of the linearization of the system (4),
restricted to £, along U = (U',...,U™). For coordinate-free versions of
the above theorem and of the definition of linearization cf. e.g. [Bv, KV].

4. COVERINGS, NONLOCAL SYMMETRIES AND RECURSION OPERATORS

Definition 4.1. [Bv] We shall say that a covering 7 : € — £ of the
equation & is given, if the following objects are fixed:

1. A smooth manifold €. , infinite-dimensional in general.

2. An n-dimensional integrable distribution Con €.

3. A regular mapping 7 of the manifold £ onto £ such that for any
point 6 € & the tangent mapping 7, ¢ is an isomorphism of the plane
Cp to the Cartan plane C,(g) of the equation £ at the point 7(0).

The dimension of the bundle 7 is called the dimension of the corresponding
covering. It follows from the definition that the mapping 7 takes any n-
dimensional integral manifold U C € of the distribution C = {Cg}e oz toan
n-dimensional integral manifold U/ = T(U ) C £ of the Cartan distribution
on £, i.e., to a solution of the equation £. Conversely, if Y C £ is a
solution of the equation &, then the restriction of the distribution C to the
inverse image U= Y (U) c £ is an integrable n-dimensional distribution.

The manifold £ and the mapping 7 : £ — £ can be locally realized as
the direct product £ x W, where W C RY is an open set, 0 < N < 0o, and
as the natural projection €°° W — £ respectively. Then the distribution
Con & =E® x W can be described by the system of vector fields

~ 0 )
(12) Di:DiJrjz;Xijawj, 1=1,...,n,

where X; = X;;0/0w;, X;; € Coo(g), are T-vertical fields on &£, and wy, ws, . . .
are standard coordinates on RY,
Locally £ is nothing but (6) combined with the following equations:
awi

(13) 5g =G i=L. N j=1...n
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The conditions [D;, 15]] = 0 are equivalent to the equations
(14) Di(X;x) = Dj(Xix)
foralli,7=1,...,n,1 <k < N, which must hold on E.
Relations (14) constitute a system of differential equations in functions

X;; describing all possible N-dimensional coverings over the equation &.
The coordinates w; are called nonlocal variables.

Definition 4.2. [BV] Two coverings 7; : & — €%, i = 1,2, are called
equivalent if there exists a diffeomorphism o : & — & such that the diagram

f— &

\/

is commutative and a*(C ) =C2, . for all points y € &;.

a(y)

Let 7: & — £ be a covering over the equation £. A nonlocal symmetry
of the equation & is by definition a local symmetry of the object &. Nonlocal
symmetries in the covering 7 : £ — £ will be called symmetries of type T,
or nonlocal T-symmetries.

Definition 4.3. [BV] The Lie algebra of nonlocal 7-symmetries of the equa-
tion & is the quotient Lie algebra

sym € = Xc(g)/CX(g),
where "
CX(E) = {Z wiDi | ¢i € C“(g)} :
i=1

while X (€) consists of vector fields X on € such that [X,CX(£)] C CX(E).

If coverings 71 and 7o are equivalent, then the Lie algebras of nonlocal
symmetries sym_ £ and sym_ £ are isomorphic [BV].

Consider a vector-valued differential function U : & — R™ and define the
evolutionary derivation associated to U on £ by the formula

(15) EU: ZZD[ Uj a

17]>0 j=1 up

Then EU is called a 7-shadow of nonlocal symmetry of £ if the equality
Ey(A,) = 0 holds for all s = 1,...,1 by virtue of (4), (13) and differen-
tial consequences thereof, see e.g. [Kv]. Equivalently, the characteristic U
must satisfy the equation fa|e(U) = 0, where £, is the linearization of A
naturally lifted to &.

In a similar fashion, the solutions of the adjoint system Z*A| g (y) = 0 will
be called T-shadows of nonlocal cosymmetries of £, cf. e.g. [KV].
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Theorem 4.1. [BV] Let 7 : EX xRN — €% be q covering of the equation
E. Then any nonlocal T-symmetry of £ is of the form

_ _ N 9
7j=1
Here EU is a T-shadow of nonlocal symmetry and A = (ay,...,an) is a

vector-valued differential function on £ satisfying the equations

(17) Di(aj) = Bya(Xy), i,j=1...,N,
where X;; are given in (12).

The coordinate-free versions of the above result and of the definition of
nonlocal symmetries and shadows can be found in [BV].

Note that the system (17) may have no solution for a given U. Thus,
not every t-shadow of the equation £ can be extended to a nonlocal 7-
symmetry in the sense of Definition 4.3. However, for any given shadow one
can construct a larger covering 7 where it could be lifted to a full-fledged
nonlocal symmetry, see e.g. §5.7 of [BV] and references therein for details.

A Backlund transformation between equations £ and & is a system of
differential relations in unknown functions u; and us possessing the following
property: if a function u; is a solution of the equation & and u; and we
satisfy the relations at hand, then wus is a solution of £&. Using the language
of coverings, this definition reads as follows.

Definition 4.4. [BV] A Bdcklund transformation between equations £ and

&y is the diagram
N

&’ &3¢
in which the mappings 7 and 7o are coverings.

If £7° = £5°, then the Backlund transformation of the equation £ is called
a Backlund autotransformation. In the case of £° = £5° = VE™, where
VE™ is the linearized version of £ (see e.g. [MA] for details; there the
object in question is denoted by V E), we arrive at the following definition
of the recursion operator for €.

Definition 4.5. [MA] A pair of coverings 71,72 : R — VE™ is a recursion
operator for £ if the diagram
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2N\

VE>® VE®
EOO
is commutative.

From now on we shall assume the bundle 7 to be trivial and work solely
in the canonical local coordinates.
For instance, in the case of a (141)-dimensional system of evolution equa-
tions
ou

(18) Eﬁ—::lﬁ(x,t,ﬁ,ﬂ;,...,ﬂgx)

in two independent variables z,t and [ dependent variables u!, where @ =
(ub,..., )T, F = (F',...,FYT i, = 09i/027, iy, = i the diagram from
Definition 4.5 often has the form (cf. e.g. [s1]):

Uy = (x(U)
i =F
/ Fp:V= Zk%)azD;((_j)‘*‘z G;W;
= J
19 — — — —
(19) = 0:(0) (V)
i =F i = F

—

Uy =

/
N

where a; are [ x [ matrix-valued functions, - is the standard scalar product
in RY, and the superscript T indicates the transposed matrix.

Here (_jj and 7; are some fixed symmetries and cosymmetries and 7 is the
canonical projection. Recall (see e.g. [BL]) that cosymmetries are solutions of
the determining equation which is formally adjoint to the one for symmetries.
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For (18) almost all their recursion operators known from the literature
have the form (19); the latter however is usually rewritten as

p q
(20) R:ZaiDiJrZéj@D;lo’%,
=0 j=1

Nevertheless, this approach is, in fact, somewhat inaccurate because it
does not specify the derivatives of nonlocal variables W) with respect to ¢,
which may lead to incorrect results, cf. e.g. [qU]. Thus it is indeed helpful
to rewrite the recursion operator R as a Béacklund autotransformation for
VE™ in the sense of Definition 4.5, cf. e.g. [GU, MA].

If a;, Gj and ~; in (20) are all local quantities (i.e., they are smooth func-
tions of x, t,u and of finitely many derivatives of u with respect to x, see e.g.
[Ms]) then we call [MN] recursion operators of the form (20) weakly nonlocal.

Example 1. Consider the modified Korteweg—de Vries (mKdV) equation
(21) ur = 6ulUy — Uppy.

It is well known that (21) admits a weakly nonlocal recursion operator (see
e.g. [au])

R = —D? +4u® + 4u,D; " - u.

The commutative diagram (19) then has the following form:

Wi = —ulUsy + upUyp — g U + 60U
W, =uU
U = 12uu, U + 63Uy — Upgr
up = 6uuy — Ugss

/ &V:—Um-ﬂhﬂ U-+dug W

U, = 12uu,U + 602Uy — Upew | | Vi = 120,V 4 6uVy — Vigs

Uy = 6u2u$ — Uppr U = 6u2uz — Uppa

NS

up = 6UUy — Upyy
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5. ON COMPLETE INTEGRABILITY OF THE MIKHAILOV-NOVIKOV—-WANG
SYSTEM

In the paper [1] we consider a new integrable two-component fifth-order
system of evolution equations in two independent and two dependent vari-
ables recently found by Mikhailov et al. [MC] (see also [Ms]):

U = 3 101)1)3 — 15v1v9 4+ 10uus + 25uqus
—60v2 v1 + 6v%u; + 12uvv; — 120%uy,
(22)
vy = 15vs + 30v1v9 — 30v3u — 45vou1 — 35V U9
—10vuz — 6v%v1 + 6v%u; + 12020y + 12vuu;.
Here u; = 'u/0z", v; = &v /027, ug = u, vo = v.

Using the so-called symbolic method Mikhailov et al. [Mc] proved that
the system (22) possesses infinitely many higher symmetries of orders m =
1,5 mod 6. However, no recursion operator, symplectic or (bi-)Hamiltonian
structure for (22) was known.

In [1] we have obtained the following result.

Theorem 5.1. The system (22) possesses a Hamiltonian operator
D3 - qu 3uq —SyD, — 21y >
23) P= 3B 579%, 5 ,
2 < 5”D su1 3D3 — (Bu+ 2v)Dy — 2ur — $uy
a symplectic operator
2 2

S F Y v Dt oy S+ €Y v Dat o i

(24) S= i=1 i=1 )
So1 + $y2 Dt oy Saz 4+ Sy22 Dt o y1a

and a hereditary recursion operator R =P o S that can be written as

Ry + Z GuD o~ Rig+ Z G1iD; ! o iz
(5) R= ,

Ro1 + Z GoiD;l o1 Roo + E G2iD; ! o7z
=1 =1

where

S11 = —ng +6uD, + 3uy, Si2 = —6vD; + vy,

_ _qp3 _ (54 36 27 18
S91 = —6vD, — vy, Sog = 9DI — (?U — ?’L)) r— FUL + UL,
_ _ _ 12,2 6,2 6,2, 12
M1 =1, 72=0, Y21 =uz— Fu+ 2v%, 722 = —20" + Fuv — vy,
36 4 108 147 3242 | 2522\ 2
far = Ds — 1316 5 D — (55 > UQ ) 75“7384_ 250 23616) 621
(21u;3 2Luug + 361)1)1) 4+ SRuug — SPvvy + S ud
4231)2 _804,3 | 864,,2 2161}3
25 V1 7 125 125 125

Ry = 84 D4 102?.1 DS (63 9 576UU—|- 252 2)D2

( §76 1445 vz g 25"

216 4322
VU] — VUL — —uvl wv? + u“v
YRR TN WA S A

3 26 3
+FUv2 — Fr UV — FUV2 — FUIVL + S5 v1 + 54,
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Ry = 84UD4 4021} D3 (576 729, 4 252 2)D2
= 25
(648Uu _|_ 1908u,U . &Ug—i— 32vv1)D + 216U2u_ 17821000
1% 35 2975 371809 | 432 2. 21656 %
——5@112 — 55 VU2 + TFU4 + 5207 + 55UV — S ugv,
Rog = —27D% + 324uD4 %ul — 3244 D3
3 5 5
+(225522}2 2752u2 486, 4 729u2)D2
+(81ug — 54vs — 13‘51 uuy + 28541)1)1 — 62458vu + 648uv1)D 42856UU2
432 9 324 324 198 54 1532~ 243, 2
+§%5 UV — Se0Ug + G5 uve + 55002 — FU4 + 5501 — S5 U
+ 8wy — 2003,
125
G = —§u5 356111)3 554111112 +3 3 uu3 + 18uqug — 120581121) + 12058v2u1
+ 156um)1 2156u U,
G21 = %U + %1}11}2 - %’Ugu 1g2v2u1 1§6U1UQ - %’Uu;; — %v%l

108 ,,2 216,,2 216
+55 v Ul + S U + Spvuu,

The recursion operator in the sense of Definition 4.5 can be readily ob-
tained from (25) using the formulas given in (19). For the definition and
properties of Hamiltonian and symplectic operators see e.g. [02, BL].

The operators from Theorem 5.1 were obtained by proceeding in the spirit
of the direct approach, see e.g. [MA] for the recursion operators and [KK]| for
Hamiltonian operators. The idea of the method consists in finding a few low-
order symmetries and cosymmetries and a subsequent attempt to construct
nonlocal parts of the recursion, symplectic and Hamitonian operators using
these quantities.

Denote

Q1 = <Zi>, Q2 = HéPo,

i.e. Q2 is a column containing the right-hand sides of (22). The recursion
operator (25) and the symmetries with the characteristics Q1 and Q9 are
readily verified to meet the requirements of Theorem 1 from [s2], and there-
fore the symmetries with the characteristics Q;; = R/ (Q;), i = 1,2, j =
0,1,2,..., are higher symmetries for (22) in the sense of Definition 3.1, free of
any nonlocal variables. In fact, it can be shown that for any given ¢ and j the
characteristic ); ; depends only on w, v, u1, V1, .+, U1 L4(i—1)4655 V14+4(i—1)+6;-
Moreover, as the recursion operator (25) is hereditary and the symmetries
with the characteristics ()1 and ()2 commute, so do the symmetries with
characteristics @; ; for all ¢ = 1,2 and all j =0,1,2,...

It readily follows from Theorem 5.1 that the system (22) has, as usu-
ally is the case for integrable systems (see e.g. [BL]), infinite hierarchies of
compatible Hamiltonian operators R¥ o P and symplectic operators S o R¥,
k = 0,1,2... In particular, this means that (22) is a multi-Hamiltonian
System.

While the Hamiltonian operator P is local, it is straightforward to ver-
ify that all Hamiltonian operators of the form RF o P, k = 1,2,..., are
nonlocal. We conjecture that P is the only local Hamiltonian structure for
the Mikhailov—Novikov—Wang system (22). Note also that all symplectic
structures So R, k=0,1,2,..., including S itself, are nonlocal.
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Furthermore, it is possible to construct two infinite sequences of conserved
functionals Hy ; and Hj ), given by the formula

(26) §H;j = (R*)*(6H;),
where
4 p)
Hy = 72 /udx, Hy = / <2u? - gu% +gu’+ g0’ - 2uv2> dz,

R* = S o P is the formal adjoint of R and ¢ stands for the variational
derivative of a functional,

5/pd:v = (=D.)dp/0i;
=0

where i, = (uj,vj)T, cf. e.g. [02]. It is readily seen that all functionals
H;j, are in involution with respect to Poisson brackets associated with the
Hamiltonian structures R*oP for all s = 0,1,2,.... By Proposition 2 of [s2],
for all functionals H; = [ p;rdz, i = 0,1,2,..., k = 1,2, their densities
pii defined recursively through (26) are local.

As a final remark, note that (22) can be written in the Hamiltonian form
as

(27) ( e ) — P6Hy.

Ut

6. ON NONLOCAL SYMMETRIES FOR THE KRICHEVER—NOVIKOV
EQUATION

In the paper [2] we consider the Krichever—-Novikov (KN) equation

2
(28) ut:umx—ium—l—P(u).

Uy Uy
Here we assume that P(u) = u3 +cju+ g is a third-order polynomial in the
reduced form (i.e., without quadratic term and with the leading coefficient
equal to 1), ¢p,c; € R. However, using suitable fractional linear changes
of the dependent variable u = ug, we can easily turn (28) into the other
known forms of the KN equation with P being a general third- or fourth-
degree polynomial in u, cf. [Ds].

The KN equation first appeared in [KN] in connection with the study of
finite-gap solutions of the Kadomtsev—Petviashvili equation which has plenty
of physical applications from plasma physics to fluid dynamics, see e.g. [NP]
and references therein.

For the KN equation (28) there exist [Ds, so] two weakly nonlocal recur-
sion operators R and Ra of orders 4 and 6, respectively, which satisfy [Ds]
the relation (elliptic curve)

(29) R3 =R} — ¢R1— 0,
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where
_ E N2 " pl (Iv)
¢f27((P) 2P" P + 2P P),

_128( 1

=513 (P/’)3 . 3(P/)2P(IV) +P'p'p" 4+ opUVipip _ P(P///)Q)‘

3 2
When written according to Definition 4.5, R is given by (19) with
V= Rl(U) = Dé(U) + ang(U) + QQD?C(U) + agDm(U) + aqU
+ GIWi 4+ uWa,
where G denotes the right-hand side of (28),

(30)

2
a; = —4—, ag = —2 +0—5 — 55,
Ug Uy uy; 3 uz
Udqg UgprUgzx ui‘x Ugy 2P
az = —2— +8—5— —6—3+4—3P—7—,
Uy ug u, u, 3 Uy
2 4 2 2
Usy UgrUdz U Uy Uzza Uy, 4P 4ug,
ag = —— —4—— 2-5 +8 3 STy ToartaTn
Ug ug 2 u, uy;  9u 3u
S8Ugy -, 10 _,
IS o A S
3u 9

luz, 1P 1u? 3uy,  Hul 1 P2 5
et B RS S b B & AU 5 I T
2uz  3ui 2 ug 8u; 6 ug 18u; 9

and ¢/6u is the variational derivative (cf. e.g. [02]),

[e.9]

Sp/u="Y (=Dy)dp/0ujy.
=0

It is obvious (cf. [Ds]) that the ratio R3 = RooR; " is a recursion operator
of order two for (28). However, this operator is not weakly nonlocal in the
sense of [MN] and, as it was pointed out in [Ds], it was unclear how to apply
it even to the simplest symmetries of (28), for instance to uy.

Note that for many equations it is possible to obtain the shadows of
nonlocal symmetries by applying their recursion operators to the scaling
symmetries, see e.g. [0E]. However, the KN equation (28) has no scaling
symmetry, so this approach does not work. One could also try to construct
nonlocal variables as potentials for conservation laws and subsequently look
for (shadows of) nonlocal symmetries depending on these variables, cf. e.g.
[s1] and references therein for more details; however, this method also gave
no results for the equation in question. Thus, no nonlocal symmetries (or
even shadows thereof) for (28) were known to date.
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In [2] we construct new infinite hierarchies of shadows? of nonlocal sym-
metries and cosymmetries for (28) using the inverse R of the fourth-order
recursion operator Ri.

We also address in [2] the problem of how to apply the recursion operator
R3 to the known symmetries of (28).

In order to recall the results of [2], introduce the nonlocal variables p;, ¢;,
zi, i = 1,2, defined by the following relations (see Appendix of [2] for the
motivation of this definition):

(p1)z = k3pi + 2kip1 — ko, (p1)e = l3p? + 2lip1 — o,
(21)z = — (k1 + p1ks), (z1)t = —(I1 + p1l3),
(q1)z = —kz exp(—2z1), (q1)t = —l3exp(—221),
(p2)e = —ksp} — 2kipa + ko, (p2)e = — (I3 — m) p3
(31) 42 2c
(=42 -
<3Ux + 1) b2 3u, + l2,
2u2
(22)z = (k1 + p2ks), (z2)e =1l + 3o TP (I3 —m),
(q2)z = k3 exp(—222), (q2)t = (I3 — m) exp(—222).
Here
b — _\/é(clu + 2¢p) b — V6eru
1 12 /Coty > 12/c0u,
ey = V6u(degu — c?) _— 2(c? — 8cou — 2c1u?)
12¢1\/couy 3¢y ’
lh = —i(—ﬁcluuxumx — 12¢oUgptiprr + SCluufm + GCoufm

72\ /coud
+ 1261u§um + 4\/6\@u2ui — 2c1ut — degu® — 26%162
— 6epcru — 4cd),

(32) \/601 2 2 2 4
T

— 2¢c1u® — 2cou),

V6

3= ———-— — 6 U Uy + 24cou2u Upze + 3C2UU
7201,/cou§( e Ree Lo !

— 12cuu2, + 123U Ugy — 96couuiug, + 96cout — 4v6/coctu>

2
TT

3
+ 32\/665 uuzJ + 8\/6\/coclu2u§ + 8cou® — 26%u4 + 8cperu®
—2c3u® 4 8cku® — 2cociu).
2The terminology used in [2] is slightly different in that in order to streamline the

presentation the shadows were referred to as nonlocal (co)symmetries, as it is often done
in the literature (cf. e.g. [BL, OE]).
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Geometrically, equations (31) define a six-dimensional covering over (28).
Now define the quantities V; and v;, ¢ = 1,2,...,6, as follows:

2
clu + 2c0
1= 2¢g 40100 ; — 4cou) Upz + 2c1(cru + 2¢9)p;

+c3u)(q; — 1) exp(2z;) + u(c] 4cou)pz] ,
2

1
Vom0 ((c} = deou)upy + 2¢1 (cru + 2co)p; + cju) exp(22;),
Li=1
V6 2 i—1((.2 2 2
Vi = 780%\/% Z(—l)’* ((c1 — deou)up; + 2c1(cru + 2¢o)pi + cju) exp(2z;),

2
Vi=— E —4cuu~—|—26 ciu + 2co)p;
64\/70 o)pz 1(c1 0)Pi

=1
—|—clu)(qi — 1) exp(2z;) + u(cl 4egu) exp(—2z;)
+2u(c? — deou)pi(qs — 1) + 2¢1 (cru + 2co)ql-] ,
1

Vs = ~ 3200 ; [((c] — 4eou)up? + 2¢1(cru + 2¢o)p; + ciu)(q] — 1) exp(2z;)

Hu(c? — degu) exp(—22;) + 2u(ct — deou)pig; + 2¢1(cru + 2c0)qi] ,

Ve = — deu)up? + 261 (eru + 2¢0)p;

1661\/C> Z(_

+clu)% exp(22;) + U( 400“)]91] ,
2
o 1601\FU3 z; ) TH{{((ed = deow)up? + 2e1(cru + 2c0)pi + cfu)ugs

(Beou — A)p? — 23 — A)eid] s exp(22)
+ [(Bcou — ¢} )uZ + (cf — dcow)utizg| p;}
\/* 2
vy = Z ) ((6f = deou)up? + 2¢1(cru+ 2¢0)pi + iu)ug,
64+/c3 ux =1
H(8eou — D)p? — 263 — A)u2] (i — 1) exp(220)

[(80011, — c%)u + (cl 4cou)uum] exp(—2z;) + 2 [(SCou — c%)ui

+(c? — 4cou)uum] pi(gi — 1) + 2¢; [(260 + cu)ugy — c1u ] qz} ,

3 = 1660u3 Z {[((e] — deou)up} + 2c1(cru + 2¢0)p; + CFu)ugy

+((8cou — cl) — 201p1 ) z] (qf — 1) exp(2z;)
+ [(8cou — c})uZ + (cf — deou)uttys] exp(—22;) + 2 [(8cou — c})us
+(cf — deou)utigs ]| pigi + 2¢1 [(2¢0 + 1)Uz — c1ul] ¢;}
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2
1
c%u Z — 4equ) upZ + 2c1(cru + 2¢9)p; + clu)um

i=1
+((8cou — &)p; — 2cipi — & )uz] exp(2z),
V6 2 i-1 2 2 2
v5 = m ;(—1) [((01 — degu)ups + 2¢q(cru + 2¢0)pi + i) Ugy
+((8cou — })pi — 2011% — ] exp(22;),

(2¢c0 + cru)Uugy —

2
_ c1u 5 |
= 2cou 401cou3 z; {11 = deoujupi + 2e1(eru + 2co)pi

+efu)ugs + ((Bcou — ])pf — 2eipi — ed)uz] (@ — 1) exp(22)
+ [(8cou — ¢ )u2 + (¢} — dcou)utizg | p; } -
It turns out that the following assertions hold [2].

Proposition 6.1. The quantities V; (resp. 7;), i = 1,...,6, are shadows
of nonlocal symmetries (resp. nonlocal cosymmetries) for the KN equation
(28) with respect to the covering (51).

Theorem 6.2. The KN equation (28) possesses a recursion operator R
whose action on a symmetry U (or, more broadly, on a shadow of nonlocal
symmetry) of (28) is given by the formula
6
(33) R(U) = (S7'0)1 =D (S,
k=1
where Q) is a vector of monlocal variables defined by the relations

(34) Oy = SM U, Oy = SMU.

Furthermore, R is the inverse of the fourth-order recursion operator R
written in the form (30), that is, modulo arbitrary integration constants

arising from the definition of the nonlocal variables W; and O we have that
R(R1(U)) = R1(R(U)) = U.
The matrices M7 and My in Theorem 6.2 have the forms

0
1

D, + =

€T
6Us Uz + 3u2, + 2P |7
6u2

My

=
I

D2+@D +

OO, OO O

0
0

while the matrix S is given by the formula

S = exp(q2Y2)-exp(z2Ha)-exp(peX2)-exp(q1Y1)-exp(z1Hy)-exp(p1X1) -S(O),



where
20 VB Ve _a
c1 2c1 16\/56 8
A i
4co 1 /e 16¢0
Ve 0 0 a 0
v | V& 8¢co
Woeo 0 1 0
301
4
= 0 0 V6 0
C1 2\/66
0 44/6¢q 73 _a Vel
361 C1 460 12\/56
6
0 oo Yo a 0
160 8
a 0 0 _4a Ve
4cq 16¢q 16\/56
vi—| Va4 _a
6y/c 8¢ A
0 00 0 0
0 00 0 0
o oo o Mo 0
i 12c
0 0 0 0 0
a4
2co 4.\/co 8co
\/601 2\/660 1 i
3/ 3 4co
H=1 0 0 1 V6o
3
6
0 0 V6 1
2./co
6
0 0 o _a _Voa
2¢q 6./co

27

V6er
16y/c

C1

260
C1
vV 600

1
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2cg \/ﬁ \/601 C1

1 st} - _a 0
c1 2c1 16,/co 8
_i -1 _ \/6 0 C% _ \/661
4co 1/c 16c) 16y
f 2
_vba 0 0 ‘. 0 a
w_| ova 8eo 1
, =
4,/ 9
Sy 0 1 0 =0
3¢y C1
4 0 0 _ V6 o Vb«
@ NG c:
0 4/ 2 a Vo B
3cq C1 400 12\/5
0 o o —Yoa a 0
16,/ 8
2
L 90 0 _a oo
4cg 16¢q 16\/%
Yé = \/661 0 0 _ﬁ —C—l )
6/ 8co 1
0 0 0 0 0 0
0 0 0 0 0 0
6
0 o090 & _Ya
4co 12,/
0 0 0 0 0 0
a Ve ot
20 1/c 8¢
_ V6er _ 2+/6¢o 1 C% 0 0
3./ 3 4co
_ §
Hy 0 0 0 1 —\/370 0]’
0 0 o V6 0
2./c
0 0 0 a Voo
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and
= Uy 4 U% 4 uy
1 1w 1 u
S — -2 0 -2 0
21 Ug 2u2 2 Uy
2 2
(0)  ¢(0) (0) Lutugs — u (0) 1u
o S31” Sap S33 2w W S35 5w
SW = *
(0) (0 (0) uu 1 (0) u
Sit Sip Si3 ugw T S5 T
1 1
s o = 0 —— 0
uz, Uy
SO GO _Umw  Usp s Llug, 1,0 1
61 62 u3 ut u3 2wl 3ud Uz
where
GO Ly Tt 10 o Lt Lw, Lu
1 4 w2 4 ul o 6ul b 2wl 2wl 3ul’
Sé?) _ 2 U Uy — 4u22§xﬁ— 2uu§um + 2ui Py éu(5uum4— 2u§) P
ul’ UZB
ilﬁ ; luzug,x U U Uay §u2ufcm
18 u?2 2 ud ud 2 ul
B (5uu2, + urugy — ud)uzes n (Ut + u2) (2utigy — u2)u2,
5 6 ’
ux um
g0 _ 2u(Utiyy — u?) p u? P Tuuge 1 (—3utiyy + 2u2)Ullypy
32 = —T o5 Lt +to—3 9 4
3u? 6us, 2w 2 Uy
(Ugy + u2) (—Utigy + 2u2 ) Uy
_ - 7
X
SO _ 1 U U 1 u?u2, +2uum 1. s _ EUQU?CCC _Wer 71P7112
33 2 w2 wud w2 T 4 3 uy 6 ud’
S(O) _ AUt Up gy — 8uug2m — 2u§umP + DUy — ufc ;o 57u n  UlUsg
i 3ub 3ul 9u2 u3
Ul gy Udy uu2,, B (10utze + U2 Upptiprr — (AUtipy + u2)ud,
+ 4 ! +3 ! - + 20 ,
x x x x
2 2
o 1 —duug, +2uf Lu o, wuwgy (—3ulzy + Us)Uzes
Siz = 3 ud P+ g@P + u3 + ud
_ (_2uu$$ + uac)u?cx
ud ’
2
uu uu U 0)  Ulgs, Uge U
S(O) _ TIrT T 9 xac’ S( Uz 7P,
43 ul ud 2 15 2u3 w 3ul
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2
S(O) _ _ulﬁ?ﬂ? Uz _ 2
ol ul ud o 3ud’
2 2 2 4
0 QUpUprr — U Su 5 us Uy Ug U Uz U U
3ug, 3 ug Juz us, Uy Uy u, ud,
3
0 4u 1 Uy Uprl U
S =~ Py Py gl gt
3 Uz Sua: Uz Uy Uy

Let us also mention that R can be formally written in the pseudodiffer-
ential form (cf. e.g. [Ds, 02]) as

6
(35) R=>V,D;'on,
i=1
where V; and ~; are shadows of nonlocal symmetries and cosymmetries for
(28), see above.
Using Theorem 6.2 we can enhance the result of Proposition 6.1 as follows:

Proposition 6.3. The quantities V;(j) = RIV;) (resp. (R*)(v)), i =
1,...,6, are shadows of nonlocal symmetries (resp. of nonlocal cosymme-
tries) for the KN equation (28) for all j =0,1,2,....

Here R* is the formal adjoint of ﬁ; in the pseudodifferential form we can
write R* = — Z?:l vi Dyt oVj; the correct definition of such an operator is
given in analogy with Definition 4.5 with V& replaced by the dual object,
the so-called cotangent covering over &, see e.g. [KV] for details.

As a final remark, note that it is possible to construct two hierarchies
of highly nonlocal Hamiltonian structures for (28) of the form R7 o H;,
j=1,2,...,i=0,2, where Hy = u,D; ! ou, and Ha = RooHy, cf. [Ds, S0].
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