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1. INTRODUCTION

The evolution of computer science has supported the development of
many areas of research, e.g. in physics, chemistry, medicine and mathe-
matics. Identification theory belongs to these areas. This theory started to
be developed in the sixties of the 20th century. At first the identification
techniques for linear systems were developed, R. Bellman and K. J. Astr6m
proposed the methods based on the Laplace transform, J. Delforge prefered
the modal matrix approach.

A number of biological or economical processes can’t be described by
linear systems. The techniques for parameter determination of the nonlinear
systems depend on the model structure. L. Zhao and Y. Lu employ the
least square method for the identification of deterministic and stochastic
systems. The quasilinearization method is the most important one for the
identification of nonlinear differential systems.

In the submited thesis, classical quasilinearization, its employing for the
inverse problems and its modification for the parameter identification are
presented (chapter 4).

The aim of this work is to determine the parameters characterizing sys-
tems of ordinary differential equations. These systems describe the liver
function using the BSP-test (chapter 5). Properties of the systems are ana-
lyzed in chapter 6. The uniqueness of the parameter determination is dis-
cussed in chapter 7. In the chapter 8 we present the clinical data and chapter
9 is devoted to the numerical results based on them.

2. MATHEMATICAL MODELS

The BSP (Bromsulphtalein) dynamical test is employed for quantitative
assesing of the liver function. BSP is a hepatotrophic matter, which is
injected into the blood. The liver is the only organ in the body which takes
BSP and secrets it directly into the bile. We can represent this process by
a three compartment model.

BSP—— blood liver bile

The extraction of BSP can be described by systems of ordinary differential
equations.

A simple model of the process describing the extraction of BSP in these
individual compartments (the blood, the liver and the bile) can be given by
a system of linear ordinary differential equations (JLM) [22]

Z'(t) = —aiz+ agy,
y(t) = a1z — (az+a3)y,
Z'(t) = a3y, (2.1)

where



z(t) is the amount of BSP (mg) in the blood at the time ¢,

y(t) is the amount of BSP (mg) in the liver at the time ¢,

z(t) is the amount of BSP (mg) in the bile at the time ¢,
ai,as,a3 are the transfer rate constants (min=1).

Suppose that some quantity I > 0 (mg) of BSP is injected into the blood
at once. This leads to the initial condition

2(0) = I, y(0) = 2(0) = 0. (2.2)

The hepatotrophic matter is cumulated in the liver. This organ is able
to take in only a limited amount of BSP, i.e. the liver has some capacity
K > 0. In this case the process of extraction can be described by the simple
nonlinear system of ordinary differential equations (JNM)

Z(t) = —ba(K —y),
y'(t) = biz(K —y) — bay,
2Z'(t) = by, (2.3)

with the initial condition (2.2).

BSP is "working” inside the hepatic cells. Suppose that the rate of trans-
fer from blood to the liver is changing, when passing through the cell’s
membrane. Denote

X(t) is the amount of BSP (mg) in the blood at the time ¢,

Y (t) is the amount of BSP (mg) in the membranes of he-
patic cells at the time £,

Z(t) is the amount of BSP (mg) inside the cells at the time
12

di,do,ds, dys are the transfer rate constants (min=!).

Now we represent the extraction of BSP by the four compartment model:

BSP ——| blood bile

Y(t) Z()

liver

This situation can be described by the system of linear diferential equations
(LM)

X'(t) = —diX +doY,

Y'(t) = diX — (dz +d3)Y,

Z'(t) = d3Y —d4Z,

VI(t) = dyZ (2.4)

with initial condition

X(0) =1, Y(0) = Z(0) = V(0) = 0. (2.5)
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If we consider the capacity of the liver, then we can describe the extraction
from the respective components of the model by the system of nonlinear
diferential equations (NM) [15]

X'(t) = —aX(K;-Y),

Y'(t) = a1 X(K1-Y)—cY(Ky—Z),

Z'(t) = Y (Ky—2Z)—c3Z,

V'i(t) = es32Z, (2.6)

where K is the capacity of the cell’s membranes, K5 denotes the capacity
of the interior of the cells, and c1, co, c3 are the rates transfer constants.

All the parameters characterizing the systems are unknown.

3. CLINICAL DATA

To determine the unknown parameters (the capacities and the rate trans-
fer constants) we employ the measured data. In the first table there are
presented measurements of the decay of BSP from the blood:

Time | ¢; [min] | O 3 5 | 10 |20 |30]43
BSP | ri[mg] || 250 | 221 | 184 | 141 | 98 | 80 | 64

In the second table there are the values of the amount of BSP in the bile:

Time | $; [min] 0 5 10 15 20 25 30
BSP | €; [mg] 0 0.2 | 2.5 6 10.5 | 15.8 | 21.7
Time | 8 [min] 35 40 45 50 60 70 80
BSP | e; [mg] 28 | 34.8| 41.8 49 63.8 | 78.5 | 92.7
Time | 8; [min] 90 | 100 | 110 120 130 140 150
BSP | €; [mg] || 105.7 | 117 | 127.1 | 136.3 | 144.5 | 152.1 | 159.2

For numerical computations we use cubic splines interpolating these data.

4. MODIFIED QUASILINEARIZATION METHOD FOR THE INVERSE PROBLEM

We use a modification of the quasilinearization method for determining
the unknown parameters characterizing the mathematical models describing
the BSP kinetics in the human liver. We describe this method briefly.

Let @ C R™ be closed convex set of the variables z = (x1,...,2,)"
and D C RY be closed convex set of the parameters a = (ay,...,ay)’ .
Let f: @ x D — R™ have continuous bounded partial derivatives up to
the second order. Consider a nonlinear autonomous system of ordinary
differential equations with the initial condition

= f(z,a), z(0)=c. (4.1)



The aim is to find the unknown parameters « such that the solution of the
initial problem (4.1) fits in some sense to the measured data, respectively to
the continuous function which approximates these data. In order to avoid
considering two different types of vectors we will suppose that the vector «
satisfies the differential equation

a=20
with the initial condition
a(0) =3
Define a new vector x by
= (3:7&)—'— = (a"la-" yTpy A1y - - aaN)T € Rn+Na

and a vector ¢ (corresponding to the initial condition) by

c= (caﬂ)T = (Cla"'acnaﬂla"'aﬂN)T eRn+N'

The vector x(t) satisfies the nonlinear differential equation

x = g(x), (4.2)
where g(x) = (f(z,a),0,...,0), with the initial condition
N —
N

x(0) =c. (4.3)
Let x(*)(¢) (k-th approximation) be a solution to (4.2) on the interval

[0, T] with the initial condition (4.3) for §; = Oz1 ey N = aN), i.e.

x(k)(O) = (c1,.-- ,cn,agk), ... ,ozg\],c))T

(the k—th approximation of the solution).
The deviation between this solution and the functions r(t) = (r1(¢),
.ma(t)) T, e(t) approximating the experimental (measured) values has the
form

=1

T
S6) = ([ )~ e +
TO

+/ v+ Z’lel —e(t))? dt, (4.4)

where 7, ~; are real constants.
We would like to find a new vector of parameters 8 = a¥*1) so that

S(x*+y < 5(x*). (4.5)

The dependence x*)(£) on the parameters 3 (8 = a(¥)) is not clear, there-
fore we approximate x(¥) () by the solution y(¥*1)(¢) of linearized system

y(t) = g(x® (1)) + I @) (y(t) —xP(2)), (4.6)



where J(x) is the Jacobian matrix of g(x) with elements

Ogi
0x;
in the ¢-th row and j-th column, 7,7 =1,...,n+ N.
The equation (4.6) represents a linear system of n + N differential equa-

tions and its general solution y(t) with
vi0)=¢, [=1,...,n (4.7

can be expressed in the form

Jij =

N
y(t) = y*® D) = p*D(1) + > gk (1) (4.8)

J=1

The function p**+1(¢) is the (particular) solution of the nonhomogeneous
equation

p(t) = g(x® (1)) + Ix® (1)) (p(t) — x*) (1)) (4.9)
which fulfils the initial condition
p(O) = (cla"'acnaoa"' ’O)T'

The (n 4+ N)-column vectors hU () j = 1,..., N, are solutions of the
homogeneous system

hOk+D (1) = J(x®) (£))nGk+D (1) (4.10)
with
Gk+1) v | O, fori #j4+n

The equality (4.8) immediately implies that the dependence of y(+1)(#) on
the parameters 3;, j = 1,..., N is linear. The parameters g;, j =1,...,N
are free and they can be used for minimizing the function

S(y**Y) = Sk41(B) = Spa (B -, Bn) =

k+1 k+1
S0 - ne)Pan + [ Y ) - et at.
It is easy to see that the functional Sk.1(0) is a strictly convex function
with a unique point of minimum £*. Put

ot = " = (B],....0%) "
if
D) — o®)|| < ¢, (4.12)

for arbitrary small ¢ > 0, and S(x**1)) < §(x(®), where x*+1(¢) is the
solution of the equation (4.2) wtih the initial condition

x(k+1)(0) — (C, a(k-l—l))T_
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Then we can repeat the whole process of evaluation until one of the following
conditions is satisfied

L S(x*+D) = S(xk).
I1. S(x®)) — §(xk+1D) < ¢, where € > 0.

If the inverse inequality is fulfiled, i.e. S(x**1) > S(x(¥), we do not
repeat the whole process of computation, but we must start with a better
choice of the initial approximation ;.

If the equality

SEE) = 5,
holds, we get the required values of parameters o = a(¥). Noting that the

deviation is not altered we finish our computation.
If the inequality (4.5) is fulfiled, but

et — o)) > ¢,

we have to modify the value of the parameter a*t1). The modification is
based on the following lemma.

Lemma 4.1. Let o®) be fized for given k.
Then for arbitrary (i > 0 there is a parameter o511 € My, where

My = {B|B € D, Sy41(8) < S(x*))}
is a convex set, such that

lat ) — a®)| < ¢

We are able to choose (i in Lemma 4.1 so that the sequence {(x}2; is
decreasing, its upper bound is {; and lim inf {; = 0. Therefore

lim ¢ = 0.
k—00

In addition, we can construct this sequence in such a way that
o
Z Cr < 00.
k=1

Theorem 4.2. Let o'¥) € D, for every k = 1,2,..., where D C RN is
closed convex subset. Let the sequence of the parameters {a(k)},;“;l satisfy
the inequality (4.12), for every k, i.e.,

ekt — B < ¢

Let the sequence (y be convergent and decreasing such that

ZCk:C<OO-
k=1

Then {a®)}2 | is a Cauchy sequence.



5. NUMERICAL RESULTS

Numerical results concerning the simple mathematical model JLM
(2.1) are presented in [7]. For illustration we will present the results for
nonlinear system (2.3) with the initial condition (2.2), I = 250. Select the
initial aproximation
a® = (KW 1 s T = (123,0.0013,0.0111) 7.
The corresponding graph consists of components z(t), z(t):
250
200
B
S 150
P

[mg]

100

50
x(t)

20 40 60 80 100 120 140

time [min]

The value of the deviation (4.4) is S(x(M)) = 25650. We stopped the com-
putational algorithm after 650 iterations, since the condition

S(x650)) — §(x649) < ¢ = 0.75
was fulfiled. The values of parameters are as follows:
K(©50)  —  180.344,
(% = 0.472971 %103,
BP0 = 0.930451 % 102,

We obtain the deviation S(x(®51)) = 4286,33, and the corresponding graph
250

200+
z(t)

B
S 150y
p

[mg]
100+
507
— z(t)
20 40 60 80 100 120 140

time [min]
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