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1. INTRODUCTION

This Thesis is based on three independent papers [1]-[3]. Their com-
mon subject are discrete dynamical systems generated by maps of a
compact metric space. In the first two papers, generally we consider
the discontinuous functions of the interval.

In the first paper we define the topological entropy for discontinuous
functions of a compact metric space with almost all of the standard
properties. This part shows that any function of the interval with con-
nected Gy graph has positive topological entropy if and only if there
is a periodic point of period different from 2", for any n € N. The
second paper studies the properties of minimal sets of functions of the
interval whose graphs are connected Gy sets. In this part we introduce
the notion w-minimal set.

Finally, the third part gives counterexamples which disprove con-
jectures about Li-Yorke sensitivity stated by Ethan Akin and Sergii
Kolyada in 2003.

2. BASIC TERMINOLOGY

Let X be a nonvoid compact metric space with metric p and let
f X — X be a map. The pair (X, f) is called the dynamical sys-
tem. Let F be the space of all maps X — X (including discontinuous
functions). For a nonnegative integer i and f € F, we denote i-th
iteration of x under f by f%(z). The trajectory of x under f is the
* , where f(z) = x. The set of all limit points of
the trajectory of x is the w-limit set of x and is denoted by wy(z). A
point x € X is periodic of period k € N if f*(z) = z and fi(z) # z
fori=1,2,...,k — 1. The trajectory of periodic point is the periodic

sequence {f"(x)

orbit. A point x € X is recurrent if x € wy(x) and we denote the set of
all recurrent points by Rec(f). A point x € X is uniformly reccurent if,
for each open set U C X containing x, there exists a positive integer
N such that if f™(z) € U with m > 0, then f™**(z) € U for some k
with 0 < £ < N.

Let f € F,ne€Nande > 0. Aset G C X is (n,e)-separeted set if for
every z,y € G, x # y there is 0 <4 < n such that p(f(x), f'(y)) > .
A set F C X is an (n,e)-span if for every z € X, there is a point
y € E such that p(f(x), f'(y)) < € for every i € {0,1,...,n}. We de-

note an (n, €)-separated set with maximal possible number of points by
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S(f,n,¢e), and its cardinality by s,(¢). Analogously, r,(¢) = min{#F :
F isan (n,e) — span}. The topological entropy of an f € F is the
number
h(f) = lim lim sup = log s,,(€).
e=0 00 N

Denote by J the class of functions of the interval I = [0, 1] whose
graph is a connected Gy set. Let ¢ € J. A non-empty set M C [ is
minimal if it is closed, ¢(M) = M and no proper subset of M has
these properties. A nonvoid set M, C [ is w-minimal if w,(x) = M,
for every x € M,,.

Let T': X — X be continuous and surjective. A pair (z,y) € X x X
is prozimal if liminf, . p(T™(x),T"(y)) = 0. The system (X,7') is
called Li-Yorke sensitive, if there is an € > 0 such that for every x € X
there is a sequence {y,}>, of proximal points to x converging to z
with

limsup p(T"(z), T"(yn)) > ¢, for any n € N.
The system (X, T') is spatio-temporally chaotic if for any neighbourhood
of any point x € X contains a point y proximal to x such that
lim sup p(T"(z), T (y)) > 0.

The map T is topological transitive if for every pair of open, nonempty
subsets U,V C X there is a positive integer n such that UNT~"(V') #
(), and is weakly mizing when the product map 7' x T of X x X is
transitive. If Y is a compact metric space and S : Y — Y is a surjective,
continuous map, the system (Y,S) is a factor of (X,T) if there is a
semiconjugacy map 7 : X — Y, i.e., m is surjective continuous map
such that T om(x) =m0 S(z), for all z € X.

3. FUNCTIONS WITH CONNECTED (G5 GRAPHS

In this section we show that some classical results concerning dy-
namical properties of continuous functions of the interval are true for
more general mappings of the interval whose graph is a connected G
set, thus for functions in the class 7.

For maps in 7, there are true some classical results, e.g., the Shar-
kovsky’s theorem (cf. [Szul]) and the Itinerary Lemma as nontrivial
consequence of result in [Szu2]. The topological entropy of these functi-

ons has the following properties. In general, the following assertion is
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true for any map of a compact metric space, thus not necessarily con-
tinuous map.

Theorem A. (Cf. [1].) Let f € F. Then
(i) h(f*) = k- h(f), for every positive integer k,

(i1) h(f|aug) = max{h(f|a),h(f|B)}, where A,B C X,
(iii) h(f) = h(f|ree(s))-

One of the main aims is to show that for maps in J another classical
result is true — Misiurewicz’s characterization of continuous maps of
the interval.

Theorem B. (Cf. [1].) Let f € J. Then f has positive topological
entropy if and only if f has a periodic point whose period is not a
power of 2.

The key result is the fact, that topological entropy is supported by
the set of recurrent points of the map. Some useful ideas were found in
[Sz] and [AKLS].

The natural question is whether the results concerning minimality of
continuous mappings of the interval can be generalized to the class J.
For continuous functions the notion w-minimal set is the same as the
notion minimal set. In general, the same is not true for functions from
J, but only for maps with zero topological entropy. For functions with
positive topological entropy it may happen that, e.g., an w-minimal set
M, is disjoint from the image of M,,. In fact, we have the following
theorem.

Theorem C. (Cf. [2].) Let f € J have zero topological entropy, and
let 0 # M C I. Then the following two conditions are equivalent.

(i) M is a minimal set of f,
(i) M is closed, f(M) C M, every point in M is recurrent, and no
proper subset of M has these properties.

Moreover, if M is minimal then f(M) = M and any point in M is
uniformly recurrent.
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4. L1I-YORKE SENSITITVITY
In [AK] Akin and Kolyada formulated the following conjectures:

(1) For minimal systems, spatio-temporal chaos is equivalent to Li-
Yorke sensitivity.

(2) Every Li-Yorke sensitive, minimal system has a nontrivial, weak
mixing factor.

The main result of this section is to give counterexamples disproving
these conjectures. These examples are based on ideas from [FPS] and
[BSS]. We describe constructions of triangular maps Fy and F5 of Q@ X .S,
where S is the circle with radius R > 0 and @ is the Cantor set in [0, 1].

The set ) is homeomorphic to the set {0, 1} of sequences of zeros
and ones. Define the Adding Machine 7 : @ — @ by 7(a) = o +
10000 . .. where addition is modulo 2 from left to right. The map 7 is
continuous on () and it is known that (@, 7) is minimal system.

Let {ni}32; be an increasing sequence of positive integers. Define
the maps F; : Q xS — @ x S, fori=1,2, by

(o) =4 (7)) if a=1111...,
Flay) {(T(Oé),gok(y)) otherwise,

where £ € N, 0 < 5 < 2™ — 2 and gpi is a homeomorphism of S.

If Sogkq is the rotation of S with suitable angle in suitable direction,
the systems (@ x S, F;) are minimal and there are only trivial weakly
mixing factor.

Let S;, for i = 0, 1,2, be the parts of the circle S with the endpoints
a;, a;+1 and the same length (as in the Figure 1).

Qg

OBRAZEK 1. The circle S.
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Without loss of generality we may consider any wgk on S; as a map
of the unit interval [0, 1]. If we define this map by ¢}, (y) = y', for
suitable sequences {t;} we get the required systems.

Thus our main result is the following.

Theorem D. (Cf. [3].) There are continuous triangular maps F; : X —
X, F;: (z,y) — (1(x), gi(z,y)), i = 1,2, with the following properties:

(i) Both (X, Fy) and (X, F,) are minimal systems, without weak
mixing factors (i.e., neither of them is semiconjugate to a weak
mixing system,).

(i1) (X, F1) is spatio-temporally chaotic but not Li- Yorke sensitive.

(i1i) (X, Fy) is Li- Yorke sensitive.
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