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Autoreferát dizertačńı práce
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Oponenti: Prof. Ralph E. Showalter
Oregon State University, USA

Prof. RNDr. Jan Franc̊u, CSc
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Matematický ústav v Opavě
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1 Abstract

Thesis is devoted to the presentation of new results about a quasi-
linear hyperbolic equation of first order with hysteresis operator.
The following is the main contribution of the thesis:

1. We show in detail that the equation with hysteresis term rep-
resented by generalized play operator can be transformed into
a system of differential inclusions with m- and T-accretive ope-
rator. This implies the existence and uniqueness of an integral
solution of our equation.

2. Using the result from the first part we derive a stability result
for the solution in the L1 space.

3. In the case that hysteresis term is represented by operators,
whose loops are convex, with properties of local Lipschitz con-
tinuity and piecewise monotonicity, we prove the existence of a
smooth solution of our problem.

4. We give an example of operator satisfying an existence theorem
and a counterexample with a nonconvex hysteresis operator.

Concernig the first point we obtain an integral solution, which is
a very weak notion of a solution, but the results can be extended
to possibly discontinuous generalized Prandtl-Ishlinskii operators of
play type. This includes the case of possibly discontinuous Preisach
operators. A similar result about m- and T-accretivity was proved
for parabolic equation in Visintin’s book from 1994. He claimed
the existence and uniqueness of the integral solution in L1. He just
outlined the argument, which is similar to that used for the linear
second order elliptic operator in divergence form. The main diffe-
rence is in the first part of the proof. Here the whole proof is made
in detail.

The second point deals with asymptotic behaviour of solution.
We apply the theorem of Wittbold together with the theorem about
accretivity for hyperbolic operators with hysteresis to get the stabi-
lity result for solution in L1. There have been no known asymptotic
results yet. The asymptotic results for parabolic equation were given
by Kopfová in 1998.

Furthermore in the third point we introduce a weak formulation
of our problem in Sobolev spaces. By investigation of the smooth-
ness of solutions for continuous hysteresis operators, we get the exi-
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stence of a smooth solution. The existence theorem is proved by a
method based on an approximation of implicit time discretization
scheme, a-priori estimates and passage to the limit. The smooth-
ness result satisfies an entropy condition. We obtain an uniqueness
result by nonlinear semigroup approach. The assumptions of the
existence theorem are satisfied, e.g., by the generalized play opera-
tor and the Prandtl-Ishlinskii operator, whose hysteresis loops are
convex. In Visintin’s book one can find an existence results for
quasilinear parabolic equations with memory.

In the fourth part we compute an exact solution for the classical
play and a bit modified generalized play operator using the method
of characteristics. We point out that convex hystersis operator sub-
stituted by classical play satisfies the assumptions of the existence
theorem and we get continuous solution of our problem. In the case
we assume a slightly modified nonconvex generalized play operator
we find out that the characteristics with different values of solutions
cross, i.e., we get a discontinuous solution.

2 Introduction

We study the quasilinear hyperbolic equation with hysteresis

∂(u+ v)

∂t
+
∂u

∂x
= f, v = F(u) in Ω × [0, T ], (2.1)

u(x, 0) = u0(x),

u(α, t) = 0,

where Ω = (α, β), as a generic model for the transport and adsorp-
tion of a chemical of concentration u(x, t) carried in a solution with
constant unit velocity in a tube x ∈ (α, β) for t > 0. Here F(·) is
a rather general functional describing adsorption and desorption of
the chemical on the particles of solid filling up the tube. In the gene-
ral situation considered here, the adsorption-desorption functional
F(·) exhibits hysteresis, i.e., the relations between u and v for the
case when u is increasing (adsorption) and decreasing (desorption)
follow different curves. There is hysteresis represented by a type of
a generalized play. The motivation for our study comes from appli-
cations in chemical and geological engineering.
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Hysteresis is an exciting and mathematically challenging phe-
nomenon that occurs in rather different situations: it can be a pro-
duct of fundamental physical mechanisms (such as phase transitions)
or the consequence of a degradation or imperfection (like the play
in a mechanical system), or it is built deliberately into a system in
order to monitor its behaviour, as in the case of the heat control via
thermostats. The interplay between memory effects and the occur-
rence of hysteresis loops has the effect that hysteresis is a nonlinear
phenomenon which is not easy to treat mathematically.

Hence it was only in the early seventies that the group of Russian
scientists around Krasnosel’skii introduced the concept of hysteresis
and started a systematic investigation of its properties which cul-
minated in the fundamental monograph Krasnosel’skii-Pokrovskii
(1983). From that moment many mathematicians have contributed
to the mathematical study of hysteresis and important monographs
have appeared, see Brokate and Sprekels [1], Krejč́ı [7], Mayergoyz
[8] and Visintin [10].

The equation (2.1) was studied in [2], [3], [9], [10]. Visintin inve-
stigated the Cauchy problem for equation (2.1) with hysteresis func-
tional represented by a possibly discontinuous generalized play ope-
rator by using the semigroup approach. He claimed the existence
and uniqueness of the integral solution in L1, but he just outlined
the proof. These results can be extended to possibly discontinuous
generalized Prandtl-Ishlinskii operators of play type, this includes
the case of possibly discontinuous Preisach operators.

In Visintin’s book [10] it was posed as an open problem whether
the integral solution of (2.1) with hysteresis satisfies an entropy con-
dition introduced by Kružkov. Such an entropy condition was de-
rived by Kopfová [2]. Visintin also considered the Cauchy problem
for completed relay operator and its regularization and proved the
existence of a weak solution [11].

The results can be extended to the more general quasilinear hy-
perbolic equations of the form

∂(u+ v)

∂t
+

N∑

j=1

∂

∂xj

(bju) + cu = f, (2.2)

where let bj and c be given smooth functions, [3], [10].
Showalter and Peszynska obtained the existence and uniqueness

of differentiable solutions by the theory of nonlinear semigroups in
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a Hilbert space L2. They assumed that hysteresis is represented by
the classical play operator and also by more general case of convex
adsorption-desorption hysteresis functional.

The goal is to present new results concerning quasilinear hyper-
bolic equation of first order with hysteresis models.

The first part is devoted to the theory of nonlinear semigroups.
We transform our equation (2.1) into a system of differential inclu-
sions containing an accretive operator. A main result of the section
is an important theorem about m- and T-accretivity of the operator
provided that F(·) is generalized play operator. A theorem about
existence and uniqueness of an integral solution follows. Such inte-
gral solution satisfies an entropy condition [2].

In the second part we investigate the smoothness of solutions of
our problem coupled with a nonconvex generalized play operator and
with suitably restricted class of hysteresis models, whose hysteresis
loops are convex. This branch of hysteresis is represented by a gen-
eralized play operator, a generalized Prandtl-Ishlinski operator and
a Preisach operator. We find out that they prevent the formation
of shocks. On the other hand the nonconvex hysteresis operators
cause a discontinuity of solution. This was shown throughout the
investigation of a slightly modified nonconvex generalized play ope-
rator.

In the third part we investigate the asymptotic behaviour of the
solution of a boundary value problem associated to the equation
(2.1) with zero right-hand side. We apply the theorem of Wittbold
together with the theorem about accretivity for hyperbolic operators
with hysteresis to get the stability of the solution.

3 Hysteresis and semigroups

In this section we study the accretivity properties of the possibly
discontinuous generalized play operator for the equation

∂(u + v)

∂t
+
∂u

∂x
= f in Ω × [0, T ]. (3.1)

The theory of nonlinear semigroups is used to prove existence and
uniqueness of integral solutions. Exact result is stated in Theorem
3.2. Theorem 3.4 proves that the integral solution satisfies the en-
tropy condition.
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We denote by R
2
1 the Banach space of vectors U := (u, v) ∈ R

2,
endowed with the norm

||(u, v)||R2

1
:= |u| + |v| ∀(u, v) ∈ R

2
1.

L1(Ω; R2
1) is a Banach space endowed with the norm

||U ||L1(Ω;R2

1
) :=

∫
Ω

(|u(x)| + |v(x)|)dx

∀U := (u, v) ∈ L1(Ω; R2
1).

(3.2)

The space H is defined as H := {u ∈ H1(Ω), u(α) = 0}. The norm
in space H is denoted by ‖ · ‖H.

We transform the equation (3.1) containing possibly discontinu-
ous generalized play hysteresis operator into a system of differential
inclusions with accretive operators [10], Section VIII. The equation
(3.1) with initial conditions u(x, 0) = u0(x), v(x, 0) = v0(x) is equiv-
alent to the Cauchy problem:

{
∂U
∂t

+ A(U) + <(U) 3 F, in Ω × [0, T ]
U(0) = U0,

(3.3)

where

D(A) := {U ∈ R
2 : inf γr(u) ≤ v ≤ sup γl(u)}

A(U) := {(ξ,−ξ) ∈ R
2 : ξ ∈ φ(U) ∩ R}

∀U ∈ D(A)

B(u) :=
∂u

∂x
<(U) := (B(u), 0) (3.4)

D(<) := {U ∈ L1(Ω; R2
1) : Bu ∈ L1(Ω)}

Q(U) := A(U) + <(U)

D(Q) := {U := (u, v) ∈ L1(Ω; R2
1) : U ∈ D(A)

a.e. in Ω, u ∈W 1,1(Ω), u(α) = 0}

and by setting U := (u, v), U0 := (u0, v0), F := (f, 0),
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φ(u, v) =





{+∞} if v < inf γr(u),

R̃
+ if v ∈ γr(u) \ γl(u),

{0} if sup γr(u) < v < inf γl(u),

R̃
− if v ∈ γl(u) \ γr(u),

{−∞} if v > sup γl(u),

R̃ if v ∈ γl(u) ∩ γr(u),

(3.5)

where R̃ := [−∞,+∞], R̃
+ := [0,+∞], and R̃

− := [−∞, 0].
First, we present a general statement (see [10], Section VIII.2, Propo-
sition 2.1), which we shall apply to hysteresis model (see [10], Section
VIII.2, Theorem 2.2).

Proposition 3.1 (Accretivity. General Case) Assume that the (pos-

sibly multivalued) function φ̂ : R
2 → P(R̃) is such that

D(φ̂) := {(u, v) ∈ R
2 : φ̂(u, v) ∩ R 66= ∅} 66= ∅,

and {
∀(ui, vi) ∈ D(φ̂), ∀ξi ∈ φ̂(ui, vi)(i = 1, 2),
if u1 < u2 and v1 > v2, then ξ1 ≤ ξ2.

(3.6)

Set
{

D(Â) := {U := (u, v) ∈ R
2 : φ̂(u, v) ∩ R 66= ∅},

Â(U) := {(ξ,−ξ) ∈ R
2 : ξ ∈ φ̂(u, v) ∩ R} ∀U ∈ D(Â).

(3.7)

Then Â is T-accretive in R
2
1.

Moreover, if
{

∃â > 0 : ∀z ∈ R, Gz : u 7→ {v ∈ R : v − z ∈ âφ̂(u, v)} is a
maximal monotone (possibly multivalued) function in R

2,
(3.8)

then Â is m-accretive in R
2
1.

Theorem 3.1 (Accretivity. Rate Independent Case) Assume that
γl and γr are such that inf γr(u) ≤ sup γl(u) and that D(A) 66= ∅.
Then the operator A is T- and m-accretive in R

2
1.

Proof. Direct application of Proposition 3.1, as condition (3.8) is
fulfilled for any â > 0. In fact, for any (u, z) ∈ R

2 and any â > 0,
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Gz defined in (3.8) as follows





Gz(u) = γr(u) if z ≤ inf γr(u),
Gz(u) = [z, sup γr(u)] if inf γr(u) < z < sup γr(u),
Gz(u) = {z}, if sup γr(u) ≤ z ≤ inf γl(u),
Gz(u) = [inf γl(u), z] if inf γl(u) < z < sup γl(u),
Gz(u) = γl(u) if sup γl(u) ≤ z;

(3.9)
is a maximal monotone (possibly multivalued) function. �

Theorem 3.2 Assume that inf γr(u) ≤ sup γl(u) and that γl(u),
γr(u) are affinely bounded, that is, there exist constants C1, C2 > 0,
such that ∀w ∈ R, ∀z ∈ γh(w)

|z| ≤ C1|w| + C2, (h = l, r). (3.10)

Let A and < be defined as previously. Then the operator A + < is
m- and T-accretive in L1(Ω; R2

1).

Proof. We only outline the proof in its main steps. In the first
three steps we study our operator in L2(Ω; R2

1). In the first step we
use Yosida approximation of curves γr and γl and for any n ∈ N.
We prove m-accretivity of the operator Q. In the second one we
show T-accretivity of the operator, by using the Heaviside graph,
for any n ∈ N . In the next step we take the limit in n and get the
same properties also for the limit operator. Finally it is studied in
L1(Ω; R2

1).
�

As we saw, the operator occuring in the Cauchy problem is m-
and T-accretive. Here we apply some classical results of the theory
of nonlinear semigroups, see [10], Section VIII.6, Theorem 6.3.

Theorem 3.3 Let Ω be an open subset of R. Let L1(Ω; R2
1) be en-

dowed with the norm (3.2). Define the operator < as in (3.4). Let A
be as above, and assume that (3.10) holds. Take any U0 := (u0, v0) ∈
L1(Ω; R2

1) such that U0 ∈ D(φ) a.e. in Ω, and f ∈ L1(Ω × (0, T ))
and set F := (f, 0), Q := A + <.

Then the Cauchy problem (3.3) has one and only one integral
solution U : [0, T ] → L1(Ω; R2

1), which depends continuously on data
u0, v0, f. Moreover, if f ∈ BV (0, T ;L1(Ω)) and <u0 ∈ L1(Ω), then
U is Lipschitz continuous.
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Let Hrγ denotes the hysteresis region, i.e., the subset of R
2 of

admissible pairs (u, v) such that inf γr(u) ≤ v ≤ sup γl(u).

Theorem 3.4 (Entropy condition) Let the assumptions of Theorem
3.2 hold. Let A0U = A(U) +R(U) on D(A0), and let S(t) = (u, v)
be the corresponding semigroup of contractions.
Let w ∈ D(A) and t ≥ 0. Then if w = (u0, v0) ∈ L∞(Ω) × L∞(Ω),

T∫

0

∫

Ω

(|u− k| + |v − k̃|)ψt(x, t)dx dt +

T∫

0

∫

Ω

|u− k|ψx(x, t)dx dt

+

T∫

0

∫

Ω

sign(u− k)f(x, t)ψ(x, t)dx dt ≥ 0

for every ψ(x, t) ∈ C∞
0 ((0, T )×Ω) such that ψ ≥ 0 and every k, k̃ ∈

Hrγ and T > 0.

Theorem is proved in Kopfová [3].
The theory of nonlinear semigroups is used to prove existence

and uniqueness of integral solutions. Exact result arises from Theo-
rem 3.2. Theorem 3.4 proves that the integral solution satisfies the
entropy condition.

Remark 3.1 The latter result can be applied to the analogous prob-
lem corresponding to a possibly discontinuous generalized Prandtl-
Ishlinskii operator of play type. This includes the case of possibly
discontinuous Preisach operator.

4 Classification of solutions

In this chapter we present results obtained in [5].

4.1 Existence result

Let us set Q = Ω × (0, T ). We assume that u0 ∈ L2(Ω) is a given
initial condition, f ∈ L2(Q) is a given function. We set v0(x) =
[F(u(x, ·))](0) a.e. in Ω. Let

F : M(Ω;C([0, T ])) → M(Ω;C([0, T ]))
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be a hysteresis operator, where we denote by M(Ω;C([0, T ])) the
Fréchet space of measurable functions Ω → C([0, T ])
We want to solve the following problem.

Problem 4.1 We search for a function u ∈ M(Ω;C([0, T ]))∩L2(Q)
such that F(u) ∈ L2(Q) and

T∫

0

∫

Ω

(u+ F(u))
∂ψ

∂t
dx dt−

T∫

0

∫

Ω

∂u

∂x
ψ dx dt =

−

T∫

0

∫

Ω

fψ dx dt−

∫

Ω

ψ(x, 0)[u0(x) + v0(x)] dx (4.1)

for any ψ ∈ L2(Q) ∩H1(0, T ;L2(Ω)) with ψ(·, T ) = 0 a.e. in Ω.

Interpretation. The variational equation (4.1) yields

∂

∂t
[u+ F(u)] +

∂u

∂x
= f in D′(Q)(in the sense of distribution),

whence
∂

∂t
[u+ F(u)] = f −

∂u

∂x
in L2(Q).

Thus u + F(u) ∈ H1(0, T ;L2(Ω)). Hence, integrating by parts in
time in (4.1), we get

[u+ F(u)]|t=0 = u0 + v0 in L2(Ω).

Now we are ready to state and prove the following existence result.

Theorem 4.1 (Existence) Let us assume operator F , whose hys-
teresis loops are convex, with properties of:
local Lipschitz continuity, i.e.,






∃L > 0 : ∀w ∈ M(Ω;C([0, T ])), ∀[t1, t2] ⊂ [0, T ],
if w(x, ·) is affine in [t1, t2],a.e. in Ω, then∣∣[F(w)](x, t2) − [F(w)](x, t1)

∣∣ ≤ L|w(x, t2) − w(x, t1)|,

and piecewise monotonicity in the following sense




∀w ∈ M(Ω;C([0, T ])), ∀[t1, t2] ⊂ [0, T ],
if w(x, ·) is affine in [t1, t2], a.e. in Ω, then
{[F(w)](x, t2) − [F(w)](x, t1)}[w(x, t2) − w(x, t1)] ≥ 0 a.e. in Ω.
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Moreover, f ∈W 1,1(0, T ;L2(Ω)), u0 ∈ L2(Ω), v0 ∈ L2(Ω).
Then Problem 4.1 has at least one solution such that

u ∈W 1,∞(0, T ;L2(Ω)) ∩ L∞(Ω;H1(0, T )) ∩ L∞(0, T ;H1(Ω)),

F(u) ∈ H1(0, T ;L2(Ω)).

The proof is led through a method based on an approximation of
implicit time discretization scheme, a-priori estimates and passage
to the limit.

Remark 4.1 The assumptions of Theorem 4.1 are satisfied e.g. by
the generalized play operator and the Prandtl-Ishlinskii operator,
whose hysteresis loops are convex.

Remark 4.2 The Problem 4.1 corresponding to a generalized play
operator, a generalized Prandtl-Ishlinskii operator (which includes
the case of a Preisach operator) can be set in the form of the Cauchy
problem [10]. For such a system we dispose of the notion of an inte-
gral solution in the sense of nonlinear semigroup theory, see Section
3. As it is stated in the following theorem, our smooth solution co-
incides with the integral solution (see [10], Section IX.2, Theorem
2.6).

Theorem 4.2 Assume that γr, γl ∈ C(R) are such that γr(u) ≤
γl(u), ∀u ∈ R and Lipschitz continuous, and F is generalized play.
Then the weak solution (u, v) has the following regularity:

u ∈W 1,∞(0, T ;L2(Ω)) ∩ L∞(Ω;H1(0, T )) ∩ L∞(0, T ;H1(Ω)),

v ∈ H1(0, T ;L2(Ω)).

Hence (u, v) coincides with the strong solution of the Cauchy problem
(3.3).

Remark 4.3 Weak solution (u, v) coincides with the strong solution
therefore with the integral solution of the Cauchy problem which sa-
tisfies the entropy condition (Theorem 3.4).

4.2 Continuity

We study the partial differential equation
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∂(u + v)

∂t
+
∂u

∂x
= 0, (4.2)

with the initial condition

u(x, 0) = u0(x), x ∈ (α, β),

and boundary condition

u(α, t) = 0.

Here v = Pr(·) is a classical play operator.
The equation (4.2) can be rewritten as

ut + ux +





0 if u− 1 < v < u+ 1
ut if v = u+ 1 decreasing
ut if v = u− 1 increasing



 = 0.

For an explicit example, let us take the initial condition

u(x, 0) = u0(x) ≡





x for −3 ≤ x ≤ 0
−6 − x for −6 < x < −3

0 for x ≤ −6.

In order to compute the exact solution, we use the method of
characteristics. If our original equation is ut +κux = 0, then the so-
lution subject to the above initial condition would preserve its shape
and travel with speed κ and u(x, t) = u0(x− κt). In our case, with
different values of κ, the characteristics must cross. The solution
itself remains continuous.

The computations of the solution along with the sketch of the
characteristics are given in Figure 1.
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Figure 1: Regions of solution in u(x, t) plane

region description u(x, t) v(x, t)

B 0 < t < x + 1 x − t 0

C x + 1 < t < 2x + 2, x ≤ 5 -1 0

x + 1 < t < x + 7, x > 5
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3
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3
x
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3

2
−1+ 1

3
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12

7
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7
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2
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7
−
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7
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G 8

3
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3
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x

7
− 5

7
, 3
2
< x ≤ 5

0, x > 5
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4.3 Discontinuity

Now we consider a special example of a generalized play operator.
The left hysteresis boundary curve is given by a function

γl(u) =






u+ 1 if -2 ≤ u ≤ 0,
1 if u ≥ 0,

−1 if u ≤ −2,

and the right boundary curve is given by

γr(u) =





u− 1 if 0 ≤ u ≤ 2,
1 if u ≥ 2,

−1 if u ≤ 0.

Remark 4.4 Notice that this operator does not satisfy the hypo-
thesis of convexity of hysteresis loops.

The initial condition is for simplicity:

u(x, 0) = u0(x) = x and v(x, 0) = x− 1, x ∈ (α, β).

The equation (4.2) can be rewritten for this operator as

ut + ux +





0 if u− 1 < v < u+ 1
ut if v = u+ 1 decreasing
ut if v = u− 1 increasing
0 if v = 1
0 if v = −1





= 0.

The initial condition is increasing for x ∈ (−∞,∞).

A: We are here inside the hysteresis loop. This means v = 0, vt =
0 and we have the equation ut +ux = 0, i.e., κ = 1 in the above
computations. Therefore t = x+ k are characteristics and the
solution is constant on them. The solution is determined by
the initial condition u(x, t) = u0(x − t) = x − t. This will be
our solution until −1 < u < 1, because then we hit the right or
left hysteresis boundary curve and therefore the equation will
be changed. Thus x− 1 < t < x+ 1.
The characteristics are t = x+ k.
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B: The same situation as above, but now we hit the left boundary
curve of the play operator and stay there (u = −1, v = 0). We
are above the line t = x+ 1 and the solution is determined by
the continuity of the solution.
The boundaries are determined by x+ 1 < t.
In our cases A, B κ is equal to one. v remains constant. In
these cases the play operator does not play any role yet.

C: Now we start considering the play operator. This means v =
u+1, vt = ut and we have the equation ut+

1
2
ux = 0, i.e., κ = 1

2
in the above computations. Therefore t = 2x + k are charac-
teristics. The solution is determined by the initial condition:
u(x, t) = x − 1

2
t and it must hold u < −1. So x − 1

2
t < −1 ⇒

2x + 2 < t. We move on the left hysteresis boundary curve of
the play operator and so v(x, t) = u(x, t)+ 1 = x− 1

2
t+1. But

v can be maximally equal to −1. So if we set −1 = x− 1
2
t+ 1,

then t = 4 + 2x is the time when v reaches the value −1.
We firstly assume the equation with κ = 1

2
so u = x − 1

2
t.

Secondly, we consider the equation with κ = 1. So we have
u = x − t, characteristics are t = x + k. For x ∈ (−∞,∞)
some values of t = 2x + 4 belong to interval [0,∞). If we try
to find a line where both solutions coincide we find out x = 0,
i.e., such a line does not exist. Thus v(x, t) is equal to −1 in
this interval. When we sketch the characteristics of our two
equations (t = 2x + k, t = x + k), we find out that the second
ones spread higher values of solution than the first ones and
that they cross. Thus the solution must be discontinuous (see
Figure 2).

The consequence of the nonconvexity of this type of the play
operator is its discontinuity. So the convexity of hysteresis loop is
broken down and shock arises. Hence it is necessary to presume
convex hysteresis model to get a continuous solution.

5 Asymptotic behaviour

In the first subsection we recall results about the asymptotic be-
haviour of the equation

ut + Au 3 0, u(0) = u0, (5.1)

14
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Figure 2: Characteristics intersect

where let A be an m- and T-accretive operator in L1(Ω). In the
second subsection we extend these results to equation (2.1) with
hysteresis.

5.1 The sub/supersolution method

In this section we recall results about the asymptotic behaviour of
the equation

ut + Au 3 0, u(0) = u0, (5.2)

where let A be an m- and T-accretive operator in L1(Ω).

Definition 5.1 A stationary supersolution of (5.2) is defined to be
a function v ∈ L1(Ω) satisfying

u0 ≤ v, a.e. on Ω, (5.3)

and

(I + λA)−1v ≤ v, a.e. on Ω, ∀λ > 0. (5.4)

A stationary subsolution of (5.2) is defined in the same way with
reversed inequalities.

Remark 5.1 Note that if v ∈ D(A) and if A is single valued, then
(5.3) and (5.4) are equivalent to

v ≥ u0, a.e. on Ω, (5.5)

Av ≥ 0, a.e. on Ω. (5.6)
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Also note that if A is an accretive operator, (5.5) and (5.6) imply
(5.3) and (5.4).

Theorem 5.1 (Wittbold [12]). Let A be an m- and T-accretive
operator in L1(Ω), i.e.,

R(I + λA) = L1(Ω), ∀λ ≥ 0, (5.7)

and

‖(JA
λ (u) − JA

λ (ũ))+‖1 ≤ ‖(u− ũ)+‖1, ∀λ ≥ 0, u, ũ ∈ L1(Ω), (5.8)

where

JA
λ (u) = (I + λA)−1(u), and R denotes the range. (5.9)

Suppose that A−10 = {0} and let u0 ∈ D(A). Then the following
holds: If there exist a stationary subsolution and a stationary super-
solution of

ut + Au 3 0, u(0) = u0,

in L1(Ω), then the solution u of (5.2) is stable, i.e., ‖u(x, t)‖1 → 0
as t→ ∞.

The existence of sub/supersolutions alone implies stability in
L1(Ω). In particular, we do not need the full strenght of accretivity
of operators to apply this method, but only that resolvents are order
preserving.

5.2 Stability result

In this section we mention two new lemmas and apply the above
results to get the asymptotic behaviour of the solution of equation
(2.1) with f ≡ 0, see [4].

Theorem 5.2 Suppose all conditions of Theorem 3.2 are satisfied,
i.e., the operator Q := A + < is m- and T-accretive in L1(Ω; R2

1).

Suppose also that u0 ∈ D(Q). Then there exists v∞(x) dependent on
x only, such that for the solution

U =

(
u
v

)
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of

∂U

∂t
+ Q(U) = 0, (5.10)

U(0) =

(
u0

v0

)
, (5.11)

the following holds

lim
t→∞

‖u(x, t)‖1 = 0,

lim
t→∞

‖v(x, t)‖1 = v∞(x).

Before proving this theorem we state two lemmas which will be
used in the proof of the theorem.

Lemma 5.1 Let Q be m- and T-accretive operator in L1(Ω; R2
1).

Then the following holds:

Q−10 =

{(
0

v(x)

)
, such that inf γr(0) ≤ v(x) ≤ sup γl(0)

}
.

Lemma 5.2 If u0 ∈ L∞(Ω), there exist a stationary supersolution
and a stationary subsolution of the equation ∂U

∂t
+ Q(U) 3 0. More-

over, those can be chosen so that they belong to D(Q).

Proof of the main Theorem. Suppose first that all conditions of
Theorem 5.2 are satisfied, i.e., the operator Q is m- and T-accretive
in L1(Ω; R2

1),

R(I + λQ) = L1(Ω; R2
1),

and

‖(JQ
λ (U) − JQ

λ (Ũ))+‖1 ≤ ‖(U − Ũ)+‖1, (5.12)

where

JQ
λ (U) = (I + λQ)−1(U)

and

‖U‖1 =

∫

Ω

(|u(x)| + |v(x)|)dx,
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denotes the norm in L1(Ω; R2
1).

Futhermore we suppose that u0 ∈ L∞(Ω). We will write

JQ
λ (U1) ≤ JQ

λ (U2),

if and only if JQ1

λ (U1) ≤ JQ1

λ (U2) and JQ2

λ (U1) ≤ JQ2

λ (U2) where

U1 =

(
u1

v1

)
, U2 =

(
u2

v2

)
,

Q

(
u
v

)
=

(
Q1(u, v)
Q2(u, v)

)
=

(
ξ + ∂u

∂x
−ξ

)
.

We will first prove that the resolvent JQ
λ is order preserving in the

previously defined sense: Suppose U1 ≤ U2, i.e., u1 ≤ u2 and v1 ≤ v2,
then

u1 − u2 ≤ 0, v1 − v2 ≤ 0,

i.e.,

(u1 − u2)
+ = 0, (v1 − v2)

+ = 0.

Therefore by (5.12) we have

‖(JQ
λ (U1) − JQ

λ (U2))
+‖1 =

∫

Ω

|(JQ1

λ (U1) − JQ1

λ (U2))
+|dx

+

∫

Ω

|(JQ2

λ (U1) − JQ2

λ (U2))
+|dx ≤ 0,

from which it follows that we have JQi

λ (U1) − JQi

λ (U2) ≤ 0, i = 1, 2,
a.e. on Ω, i.e., JQ

λ (U1) ≤ JQ
λ (U2) and JQ

λ is order preserving.
We may consider the solution of (5.10) corresponding to the ini-

tial value V , i.e., SQ(.)V, the semigroup motion through V. The
resolvent identity,

(λ̃I + Q)−1 − (µ̃I + Q)−1 = (µ̃− λ̃)(µI + Q)−1(λ̃I + Q)−1,

gives us

λ(I + λQ)−1 − µ(I + µQ)−1 =

(
λ− µ

λµ

)
λµ(I + λQ)−1(I + µQ)−1,
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where we used the notation λ = 1/λ̃, µ = 1/µ̃, and the order preser-
vation property that

(JQ
λ )nV = JQ

λ ((JQ
λ )n−1V ) = JQ

µ

(
µ

λ
(JQ

λ )n−1V +
λ− µ

λ
(JQ

λ )nV

)

≥ JQ
µ ((JQ

λ )nV ), a.e. on Ω, ∀µ, λ > 0, n ∈ N.

Applying this estimate with λ = t/n and passing to the limit as
n→ ∞ yields

SQ(t)V ≥ JQ
µ S

Q(t)V, a.e. on Ω, ∀t > 0, µ > 0.

If we iterate this last inequality n times, we obtain for µ = s/n,

SQ(t)V ≥ (JQ

s/n)nSQ(t)V, a.e. on Ω, ∀t, s > 0,

and thus, in the limit (n→ ∞),

SQ(t)V ≥ SQ(s)SQ(t)V = SQ(t+ s)V, (5.13)

a.e. on Ω, ∀t, s > 0. Futhermore, because JQ
λ is order preserving,

V ≥ U0 ≥ 0 implies JQ
λ V ≥ JQ

λ U0 ≥ JQ
λ 0,

and also

SQ(t)V ≥ SQ(t)U0 ≥ SQ(t)0 =

(
0

v0(x)

)
≥ 0. (5.14)

The last estimate together with monotonicity in (5.13) implies that
V∞ = ‖.‖1 − limt→∞ SQ(t)V exists and V∞ ∈ Q−10. However, as
(5.14) gives us,

0 ≤ SQ(t)U0 ≤ SQ(t)V, a.e. on Ω, ∀t > 0,

it follows that ‖SQ(t)U0‖1 exists and SQ(t)u→ 0, SQ(t)v → v(x) as
t→ ∞, v0(x) ≤ v(x). �
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