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1. Structure of the thesis

The thesis is based on two papers [10], [11]. Their common subject is the notion of the Bergman
kernel, which is briefly introduced along with its properties in Section 2. Proofs given in this section
are common knowledge and can be found in any introductory work on the subject and they have to be
credited to S. Bergman.

The first paper of the thesis [10] is dealing with the asymptotic behavior of Bergman kernel on the unit
disc in complex plane as argument approaches the boundary with respect to a weight with a ‘logarithmic
singularity’. The motivation is to help in the quest of seeking a weighted analogue of the celebrated
Fefferman’s result about boundary behavior of Bergman kernel on strictly pseudoconvex domains. The
literature concerning Fefferman’s result is vast and its applications numerous. Originally, however, it
serves the needs of Complex geometry in higher dimension – a subject which we briefly introduce in
Section 3 even though the setting of the paper [10] is one dimensional. The exposition is based on the
magnificent essays [24], [25], [6], [29] as well as on Fefferman’s own works [23], [3].

The second paper [11] establishes an asymptotic expansion of the harmonic Berezin transform on
the unit ball in Rn. The result is in full analogy with the paper [22], and it is a generalization of the
results obtained in [26], [27]. The asymptotic expansion of the holomorphic Berezin transform is of vital
importance in the theory of Berezin-Toeplitz quantization on Kähler manifolds. We give a quite informal
introduction to quantization problem and its relevance to the paper [11] in Section 4. For the inspiration
we refer to the excellent surveys [21], [2].

Finally, we give more detailed information about results and methods of the papers [10] and [11] in
Section 5.

2. Bergman kernels

Let Ω be domain in C, that is an open connected proper subset of C. Let L2(Ω) be the Hilbert space
of square-integrable functions, that is

f ∈ L2(Ω)⇔ ‖f‖2 :=

∫
Ω

|f |2 dλ(z) <∞,

where dλ(z) is the ordinary Lebesgue measure in R2. The scalar product is defined naturally as follows

〈f, g〉 :=

∫
Ω

f(z)g(z)dλ(z).

Consider now the Bergman space A2(Ω) of all functions that are holomorphic on Ω and belong to
L2(Ω). It can be proved that A2 is a closed subspace of L2(Ω) (for example [30]) and therefore a Hilbert
space in its own right. Moreover, the evaluation functional

ex : f 7−→ f(x)

is continuous there and thus by the Riesz representation theorem there exists a unique element Kx such
that

〈f,Kx〉 = f(x), ∀f ∈ A2(Ω).

Denoting K(x, z) := Kx(z) we can therefore represent the point evaluation as an integral operator

(1) f(x) =

∫
Ω

f(z)K(x, z)dλ(z),

with the kernel function K(x, z) which is therefore suitably named the Bergman kernel and the equality
(1) which holds for all x ∈ Ω and all f ∈ A2(Ω) is the so-called reproducing property.

It is easy to see few basic properties of the Bergman kernel.
1



(1) K(x, z) is holomorphic in x and in z̄.
Anti-holomorphicity in z is clear form K(x, z) = Kx(z) and from the fact that Kx(z) is

holomorphic by definition of being the member of A2(D). The holomorphic behavior with respect
to the x variable is a consequence of the next property.

(2) K(x, z) = K(z, x).
Since K(z, ·) = Kz(·) ∈ A2(Ω) we can use the reproducing property to obtain

K(z, x) =

∫
Ω

K(z, ξ)K(x, ξ)dλ(ξ) =

∫
Ω

K(z, ξ)K(x, ξ)dλ(ξ)

= K(x, z) = K(x, z).

(3) The Bergman kernel is unique. Indeed, lets consider two Bergman kernels K1(x, z) and K2(x, z)
satisfying the properties (1),(2) above and the reproducing property. Then they are equal.

K1(x, z) =

∫
Ω

K1(ξ, z)K2(x, ξ)dλ(ξ) =

∫
Ω

K1(z, ξ)K2(x, ξ)dλ(ξ)

=

∫
Ω

K1(ξ, z)K2(ξ, x)dλ(ξ) = K2(z, x) = K2(x, z).

EXAMPLE 1. The Bergman Kernel for the unit disk Ω := D takes form

K(x, z) =
1

π

1

(1− z̄x)2
.

This can be actually computed quite directly. In the following let f be holomorphic in a neighborhood
of D. From the Stokes theorem we have∫

D

f(z)∂z̄P (x, z, z̄)dλ(z) =

∮
∂D

f(z)P (x, z,
1

z
)
dz

2i
.

So we are looking for the function P (x, z, z̄) with the property

(2) P (x, z,
1

z
) =

1

π

1

z − x
, z ∈ ∂D,

for this granted we have by virtue of the Cauchy formula∫
D

f(z)∂z̄P (x, z, z̄)dλ(z) =

∮
∂D

f(z)P (x, z,
1

z
)
dz

2i
=

∮
∂D

f(z)

z − x
dz

2πi
= f(x).

The function k(x, z) := ∂z̄P (x, z, z̄) is in general the kernel of evaluation functional represented as an
integral operator. There are quite number of such kernels however, for example the most trivial choice
P (x, z, z̄) := 1

π(z−x) leads to the Dirac delta function k(x, z) = δ(z − x) as is well known.
But in case of Bergman kernel there is additional requirement of anti-holomorphicity (∂zK = 0) which

leads to a problem of solving the Laplace equation

∂z∂z̄P = 0 on D, P |z∈∂D =
1

π(z − x)
.

The solution is

P =
z̄

π(1− z̄x)
,

and we get

k(x, z) = ∂z̄P =
1

π

1

(1− z̄x)2
.

Since this function is clearly skew-symmetric and holomorphic in x, it is therefore the Bergman kernel

by uniqueness. ?
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The method used in the example (i.e. solving the corresponding Laplace equation) can be actually
generalized for an arbitrary domain with smooth boundary (see [30, §2.3]). There is also a series repre-
sentation for a Bergman Kernel.

LEMMA 1. Given orthonormal base {ϕk(z)}∞k=1 of A2(Ω) the Bergman kernel can be represented in
terms of the infinite series

K(x, z) =

∞∑
k=0

ϕk(x)ϕk(z).

Proof.

K(x, z) =

∞∑
k=0

〈K(·, z), ϕk〉ϕk(x) =

∞∑
k=0

〈ϕk,K(·, z)〉ϕk(x)

=

∞∑
k=0

〈ϕk,K(z, ·)〉ϕk(x) =

∞∑
k=0

〈ϕk,Kz〉ϕk(x) =

∞∑
k=0

ϕk(z)ϕk(x).

�

Perhaps most important property of Bergman kernels is their behavior under biholomorphical change
of coordinates.

LEMMA 2. Let ψ(z) be a biholomorphic mapping of the domain Ω1 onto Ω2 that is a bijective holomorphic
map with holomorphic inverse. Then

KΩ1(x, z) = KΩ2(ψ(x), ψ(z))ψ′(x)ψ′(z).

Proof. Let {ϕk(z)}∞k=1 be a orthonormal system of the space A2(Ω2). It follows that {ϕk(ψ(z))ψ′(z)}∞k=1

is the orthonormal system of the space A2(Ω1) since

δkj =

∫
Ω2

ϕj(z)ϕk(z)dλ(z) =

∫
Ω1

ϕj(ψ(z))ϕk(ψ(z))ψ′(z)ψ′(z)dλ(z).

Thus

KΩ1
(x, z) =

∞∑
k=0

ϕk(ψ(z))ψ′(z)ϕk(ψ(x))ψ′(x) =
∞∑
k=0

ϕk(ψ(z))ϕk(ψ(x))ψ′(x)ψ′(z)

= KΩ2(ψ(x), ψ(z))ψ′(x)ψ′(z).

�

Since the Riemann mapping theorem holds, that is every non-empty, open, simply connected, proper
subset of C can be biholomorphicaly mapped onto the unit disc D, this is (in theory) quite powerful
result. In practice, however, concrete formulas for ψ are mostly unknown and even if they are known,
usually they are not expressible in terms of elementary functions. There are few exceptions.

EXAMPLE 2. The biholomorphic mapping which maps the upper half plane U = {z| Im z > 0} onto the
unit disc is given by the Cayley transform

ψ(z) =
z − i

1− iz
,

which leads to the Bergman Kernel

KU (x, z) = KD(ψ(x), ψ(z))ψ′(x)ψ′(z) = − 1

π(x− z̄)2
.

?
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EXAMPLE 3. The prototypical example of a ‘complicated’ biholomorphism mentioned widely in the
literature (but mostly without details) is the one that bring square onto the unit disc. Square is a simple
polygon and a biholomorphism that brings the upper half plane onto the interior of a simple polygon
is the so-called Schwartz-Christoffel mapping [18]. For this case the mapping is the Incomplete elliptic
integral of the first kind

σ(z) =
√

2F

(
√
z + 1;

√
2

2

)
and the inverse (which we are interested in) takes form

arcsin2(sn
z√
2

)− 1,

where sn(z) is the Jacobi elliptic function. This has to be further composed with the Möbius trans-
form that maps U → D to obtain the wanted biholomorphism. We will not attempt to compute the

corresponding Bergman kernel. ?

In fact, it is often possible to go the opposite way and compute a biholomorphism ψ(z) from the
Bergman kernel as shown in the following Lemma:

LEMMA 3. Let ψ(z) be a biholomorphism that maps a simply connected domain Ω onto the unit disc D
such that ψ(a) = 0, ψ′(a) > 0 for some point a ∈ Ω. Then it holds

ψ′(z) =

√
π

KΩ(a, a)
KΩ(z, a).

Proof. Using Lemma 2 we have

KΩ(a, a) = KD(ψ(a), ψ(a))ψ′(a)ψ′(a) = KD(0, 0)ψ′(a)2 =
1

π
ψ′(a)2,

thus

ψ′(a) =
√
πKΩ(a, a).

Also we have

KΩ(z, a) = KD(ψ(z), ψ(a))ψ′(z)ψ′(a) = KD(ψ(z), 0)ψ′(z)ψ′(a) =
1

π
ψ′(z)ψ′(a),

therefore

ψ′(z) =
π

ψ′(a)
KΩ(z, a) =

√
π

KΩ(a, a)
KΩ(z, a).

�

3. Higher dimension

3.1. Pseudoconvex domains. In the case of C the natural sets to consider are domains, i. e. open
connected sets, for holomorphic functions cannot be (in general) extended to a larger domain. More pre-
cisely, to any boundary point p ∈ ∂Ω there exists a function holomorphic in Ω that cannot be analytically
continued to any neighborhood of p. The function 1

z−p meets that requirement but in fact we can find a
function for which the boundary is the so-called natural boundary, which means that it has a singularity
in every point of a dense subset of the boundary.

In higher dimensions the situation is different. In 1906 Friedrich Hartogs found an example of open,
connected set H ⊂ C2 such that for every holomorphic function on H there is a holomorphic extension
to a strictly larger domain.

His example is actually quite simple:

H =

{
(z1, z2) ∈ D× D; |z2| >

1

2

}
∪
{

(z1, z2) ∈ D× D; |z1| <
1

2

}
.
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And functions holomorphic on this set can be continued to D× D by means of the Cauchy integral∮
|ξ|=r

f(z1, ξ)

ξ − z2

dξ

2πi
,

where 1
2 < r < 1.

This discovery led to the definition of domain of holomorphy – an open subset of Cn such that there
exist a function holomorphic on it which cannot be extended to any of its boundary points.

Every domain in C is a domain of holomorphy and consequently every finite Cartesian product of such
domains is. Also any convex domain of Cn is a domain of holomorphy and the property of being domain
of holomorphy is moreover invariant under biholomorphism.

Most powerful description was given, however, by E. E. Levi in 1910 who found that the global property
of being domain of holomorphy has a local consequences.

THEOREM . Let Ω be a domain of holomorphy, p ∈ ∂Ω, Up some neighborhood of p and r real C2

function with dr 6= 0 on Up such that Ω ∩ Up = {z ∈ Cn; r(z) < 0}, then

(3) Lp(r, t) :=

n∑
j,k=0

∂2r(p)

∂zj∂z̄k
tjtk ≥ 0, ∀t ∈ Cn :

n∑
j=0

∂r(p)

∂zj
tj = 0.

In other words domains of holomoprhy (with smooth boundary) have the property that the complex
Hessian Lp(r, t) (or Levi form) of the defining function r at the boundary point p is positive semi-definite
for all vectors t in the holomorphic tangent space to ∂Ω at p.

This property is remarkably similar to differential characterization of convex set since for any convex
set that is given in the form {z ∈ Cn; r(z) < 0} with differentiable r it holds L(r, t) > 0 for all nonzero t
tangent to ∂Ω.

Domains that meet the condition (3) at every boundary point are therefore called pseudoconvex.
And domains which satisfy (3) strictly, i.e. Lp(r, t) > 0 for all nonzero tangent t, are called strictly
pseudoconvex.

Thus Levi’s theorem can be restated that domains of holomorphy are pseudoconvex. It was long
conjectured and finally proved in 1950’s by K. Oka that the converse is also true – i.e. pseudoconvex
domains are domains of holomorphy.

There are many characterizations of pseudoconvex domains, for example the domain Ω is pseudoconvex
if and only if the function

ϕ(z) := − ln(d(z, ∂Ω))

is plurisubharmonic on Ω, where d(z, ∂Ω) means Euclidean distance from the boundary and plurisubhar-
monic means that the function restricted to any complex line where defined is subharmonic, i. e. ∆f ≥ 0
at every point.

Coincidently, for convex set, the function ϕ(z) is a convex function.
Clearly, the unit ball B2n ⊂ Cn is strictly pseudoconvex. An example of the domain which is weakly

(i.e. not strictly) pseudoconvex is the complex ellipsoid.

EXAMPLE 4. The complex ellipsoid

E =
{

(z, w) ∈ C2; |z|2 + |w|4 − 1 =: r(z, w) < 0
}
,

has the Levi form

L(z,w)(r, t) = |t1|2 + 4 |w|2 |t2|2 ≥ 0,

so it is pseudoconvex. Consider the boundary point w = 0, z = 1. Vectors t tangent at that point are of
the form t = (0, t2). Substituting this we see

L(z,w)(r, t) = 0,

hence it is not strictly pseudoconvex. ?
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Pseudoconvex domains are quite general and in most cases it is easier to work with strictly pseudo-
convex ones – they possess, contrary to the general case, number of nice properties. For example, they
are locally biholomorphicaly equivalent to convex domains.

The pseudoconvexity can be also alternatively defined via Bergman kernels as follows. Similarly, as in
one-dimensional case, we can define for domain Ω the Bergman space A2(Ω) of all holomoprhic functions
that are square-integrable. Similarly, it can be proved that this space is in fact a Hilbert space in which
the evaluation functional ez : f 7→ f(z) is continuous. Therefore by the same construction we have the
Bergman kernel K(x, z).

The domain is pseudoconvex if and only if the function K(z, z) tends to infinity as z approaches the
boundary.

3.2. Riemann mapping theorem. Another difference between one dimensional and several dimen-
sional case is that we loose the Riemann mapping theorem. It was shown by H. Poincaré in 1907 that even
the two most simple domains – the unit ball B2 and the unit polydisc P :=

{
(z, w) ∈ C2; |z| < 1, |w| < 1

}
in C2 – are not biholomorphicaly equivalent.

His approach was based on the observation that the group of auto-biholomorphisms of every equivalent
domains is the same. And he showed that in the case of the ball and the polydisc the groups differ.

Intuitively, however, we can understand their non-equivalence rather simply by observing that the unit
ball has a smooth boundary while the polydisc has ‘corners’.

On the other hand the unit ball and the ellipsoid E have both smooth boundaries and yet they
too cannot be biholomorphicaly mapped onto each other. But their boundaries differ at the level of
pseudoconvexity, since the ball is strictly pseudoconvex and the ellipsoid is not.

The main problem of Complex geometry is to determine when two given pseudoconvex domains Ω1,Ω2

are biholomorphicaly equivalent and, as we will see, boundary behavior plays crucial role.
It was realized by Poincaré that we can attach to the points on the boundary numbers that do not

change under biholomorphism, providing therefore a powerful tool for the classification problem. If the
corresponding number differs for two domains, there cannot be a biholomorphic map between them.

Existence of such numbers (or invariants) is in higher dimension assured by a simple counting argu-
ment: A smooth boundary of strictly pseudoconvex domain Ω can be locally in a neighborhood of p ∈ ∂Ω
described as

Ω ∩ Up = {z ∈ Cn; Re(z1) = f(Im(z1),Re(z2), Im(z2), . . . ,Re(zn), Im(zn))} ,

for f smooth. To the m-th order the boundary is hence given by an m-degree polynomial of 2n − 1

real variables – there are thus

(
m+ 2n− 1

2n− 1

)
real coefficients to specify. On the other hand the m-th

order Taylor expansion around p of any biholomorphism is given by at most n polynomials of just n real

variables (because of analyticity) – that is n

(
m+ n
n

)
complex or 2n

(
m+ n
n

)
real coefficients. For

n ≥ 2 we can see that the first number is eventually greater than the second one as m grows. In other
words there are more smooth boundaries than there are biholomorphic maps smooth up to the boundary,
hence there must be many ‘things’ that do not change (a complete characterization of those ‘things’ was
given by Chern and Moser [13] and are called Chern-Moser invariants).

The crucial point, however, is whether a biholomorphic map must be smooth up to the boundary.
In one dimension, the answer is yes. A biholomoprhic map between two bounded domains ψ : Ω1 → Ω2

with smooth boundaries can be, indeed, extended to C∞ diffeomorphism of the closures ψ̃ : Ω1 → Ω2 –
a result which was proven first by Painlevé in 1887 [28]. But at the time of Poincaré nobody knew if the
same thing is true also in higher dimensions.

The long standing conjecture was finally proven in 1974 in case of strictly pseudoconvex domains with
C∞ boundary by Charles Fefferman [23] who received his Fields medal for it. The main idea of his proof
was to study the boundary behavior of geodesics in Bergman metric which in turn requires knowledge
about asymptotic behavior of Bergman kernel. Fefferman proved the following theorem:

6



THEOREM 1. Let Ω be a strictly pseudoconvex domain in the form Ω = {z ∈ Cn;ψ(z) > 0}, where
ψ ∈ C∞ is a real function with dψ 6= 0 on the boundary, then

KΩ(x, x) =
ϕ(x)

ψ(x)n+1
+ ϕ̃(x) lnψ(x),

where ϕ, ϕ̃ are smooth on the closure Ω, ϕ nonvanishing.

The result was generalized outside the diagonal by Boutet de Monvel and Sjöstrand in [12], that is

KΩ(x, z) =
ϕ(x, z)

ψ(x, z)n+1
+ ϕ̃(x, z) lnψ(x, z),

by using extensions for ϕ,ψ, ϕ̃.
The extensions must be understood as follows: For every C∞ function ψ(z) there exists a function

ψ(x, z) for which ∂xψ and ∂zψ vanish to infinite order at the diagonal x = z and ψ(z, z) = ψ(z). Such
an extension is known to always exists and is unique up to functions which are zero to infinite order at
the diagonal.

It turns out that the boundary behavior of Bergman kernel is an interesting subject in its own right
and has many application even outside Complex geometry, for example the asymptotic formula is used in
study of asymptotic expansion of the so-called Berezin transform which plays the crucial role in theory
of quantization on Kähler manifolds – a subject which we briefly introduce in the next section.

3.3. Weighted Bergman spaces. The first paper of the thesis [10] helps to understand (by computing
a specific example) a natural question of whether there is some analogue of Fefferman’s result in the
setting of weighted Bergman space.

Weighted spaces are obtained quite simply by adding the term – a positive integrable ‘weight’ function
w – to the volume form in the definition of the inner product so that it takes the form

〈f, g〉 :=

∫
Ω

f(z)g(z)w(z)dλ(z).

The Bergman space is then a set of functions, holomorphic on Ω such that the corresponding norm
‖f‖ :=

√
〈f, f〉 is finite. The reproducing kernel exists and it is derived as in Section 2.

The boundary behavior of this kernel with respect to non trivial weights is, unfortunately, in general
unknown, there is, however, an analogue of Fefferman’s result for the weights of the form

(4) w = ψαeg, α > −1

where ψ is the defining function of a bounded, strictly pseudoconvex domain Ω = {z ∈ Cn;ψ(z) > 0} and
g is a smooth function up to the boundary. More concretely, it holds

(5) KΩ(x, z) =
ϕ(x, z)

ψ(x, z)n+1w(x, z)
+ ϕ̃(x, z) ln(ψ(x, z)) + ϕ2(x, z),

where ϕ, ϕ̃, ϕ2 are some smooth functions on the closure, ϕ nonvanishing and the extended weight w(x, z)
is produced by extending ψ and g as in Fefferman’s theroem.

This with much more details was shown in [20] by M. Engliš. Later the same author generalized the
result [19] also to weights of the form

w ≈ ψαeg
1 +

∑
j

ψαj
(

ln
1

ψ

)βj
gj

 ,

where αj is a sequence of positive real numbers with limit +∞, gj are smooth functions on the closure
of the domain and βj are real numbers. In other words, they are weights whose main term has the form
(4), but there are ‘logarithmic’ singularities allowed in terms of higher order.

The thesis paper [10] deals with the case when there is a logarithmic singularity also in the main term –
though only for the most simple case of radially symmetric weights in the unit disc D (i.e. ψ(z) = 1−|z|2)
in one dimension.
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More precisely, the weights are of the form

w(z) ≈
(

1− |z|2
)α ∞∑

k=0

wk lnβ−k
1

1− |z|2
, (z → 1),

where α > −1, β ∈ R, w0 = 1
π . And the main result (translated to our notation) is1

K(x, z) ∼ α+ 1

(1− xz̄)α+2 lnβ 1
1−xz̄

, (xz̄ → 1),

in other words

K(x, z) ∼ α+ 1

πψ(x, z)2w(x, z)
, (xz̄ → 1),

so the principal term of Bergman kernel is still the same as the principal term in (5). On the other hand,
the full asymptotic expansion we give, is in negative powers of − lnψ, that is

(1− xz̄)α+2 lnβ 1
1−xz̄

α+ 1
K(x, z) ≈ 1 +

d1

ln 1
1−xz̄

+
d2

ln2 1
1−xz̄

+ . . . , (xz̄ → 1),

where the coefficients dk (given by a recurrent formula) are such that infinitely of them are non-zero even
when the expansion of w contains only one term, so quite different behavior as in (5).

This result was obtained by ad hoc ‘elementary’ means which do not mimic those of works [20],[19],
[23]. Obviously, the next logical step would be to somehow generalize this result to an arbitrary domain
in C and then to an arbitrary strictly pseudoconvex domain in Cn.

4. Berezin transform

4.1. Quantization. The quantum theory aspires to explain the apparent strangeness of the physical
laws at the microscopic level by introducing some non-commutativity to their mathematical description.
It was long ago realized that the so-called Heisenberg uncertainty principle and the fact that certain
measurements are ‘quantized’ – i.e. the measured values seem to come up only as integer multiples of a
unit – this all can be explained mathematically if one replaces functions f (i.e. classical observables) by
some operators Qf (quantum observables).

Non-commutativity of such operators implies Heisenberg uncertainty principle and measured values
are defined to be only members of their spectra – which can easily be a discrete set. Since the result of
any experiment is a real number, usually, there is an additional requirement that the spectrum of any
operator Qf is subset of a real line (for real symbol f).

Consider a function f(p, q) of position q ∈ R and momentum p ∈ R which describes classical evolution
of a particle in the Hamilton formalism. In canonical quantization one tries to assigns to every such f a
self-adjoint operator Qf on the Hilbert space L2(R) such that

Qq = q, i.e. multiplication operator,

Qp = −i~∂q,

where ~ is the reduced Planck constant ~ = h
2π . The fact that

[Qq, Qp] = i~I,

implies Heisenberg uncertainty principle. Note that when ~ ↘ 0 (or as observer’s perspective gets
larger and larger) the non-commutativity disappears, hence the classical physics is recovered. This idea
originated in works of Weyl, von Neumann and Dirac.

The main problem is how to choose the assignment f → Qf for more general functions than the
coordinate ones. From physical point of view one would like that f → Qf fulfills following properties

(1) f → Qf is linear,
(2) for any polynomial r, it holds Qr(f) = r(Qf ) (von Neumann rule),
(3) [Qf , Qg] = −i~Q{f,g} (Commutation relation),

1Here throughout the thesis the symbol ∼ means f ∼ g ⇔ f/g → 1 while ≈ stands for asymptotic expansion.

8



where {f, g} := ∂f
∂p

∂g
∂q −

∂g
∂p

∂f
∂q is Poisson bracket.

Unfortunately, these properties are mutually inconsistent to a spectacular degree. Not only all three
combined, but also any two of them are inconsistent (for references see [21]). It can be even shown that
von Neumann rule alone leads to a contradiction if we require it to hold for too wild functions (not just
polynomials) like the Peáno curve (again see [21]). In fact, every mathematical approach that tries to
remedy these inconsistencies starts with cutting down von Neumann rule to a bare minimum Q1 = I.

In the following we will consider the so-called deformation quantization, that is we keep the linearity
of the assignment f → Qf , discard von Neumann rule except Q1 = I and we relax Commutation relation
property to hold only asymptotically as ~↘ 0, that is

[Qf , Qg] = −i~Q{f,g} +O(~2), (~↘ 0).

In the computation of the commutator [·, ·] one usually tries to expand the product QfQg first. Ob-
viously the first term has to be

QfQg ∼ Qfg, (~↘ 0),

otherwise the classical physics cannot be restored. Then we compute the next term

QfQg −Qfg ∼ ~QC1(f,g), (~↘ 0),

where C1(f, g) is some bilinear operator. If it happens that

C1(f, g)− C1(g, f) = −i {f, g} ,
then the commutation relation is fulfilled. We can go on and produce the next term

QfQg −Qfg − ~QC1(f,g) ∼ ~2QC2(f,g), (~↘ 0),

and the next one and so on until we have the full expansion

QfQg ≈
∞∑
k=0

~kQCk(f,g), (~↘ 0).

We can summarize this by defining the so-called star product ∗ in the following way

QfQg = Qf∗g,

where

(6) f ∗ g =

∞∑
k=0

~kCk(f, g).

The series must be understood only as a formal power series in ~ since no convergence is assured.
Everything is usually presented the other way around and the series (6) is taken as a definition of the
star product together with the condition that the bilinear operators Ck(f, g) must satisfy the following
properties

C0(f, g) = fg, C1(f, g)− C1(g, f) = −i {f, g} , Ck(1, f) = Ck(f, 1) = 0 ∀k > 0.

One also requires that such a star product ∗ is an associative operation. With such a definition one can
do quantization without the underlying Hilbert space and operator calculus and work solely in terms of
star product. This is at least the main idea behind formal deformation quantization introduced in work
[5] by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer.

On the other hand, it is desirable to keep the operator picture in sight since with formal power series
it is difficult to perform concrete computations. One can easily encounter series which converge for no
value of ~ (except for ~ = 0) and so on. We will therefore keep focus on operators, though, admittedly,
without subtleties about their domains of definitions and convergence issues. Most of the time we will
consider for symbols f only polynomials and just slightly touch the definition for more general symbols.

There are number of ways how to get deformation quantization. Intuitively, the problem rises with
choice of ordering. We are trying to replace something commutative with something which is not. In
commutative realm we cannot distinguish between pq and qp, while in the operator case we sure can
−i~∂qq 6= −i~q∂q. So a polynomial g(p, q) cannot be readily replaced with g(−i~∂q, q) without specifying
some order of operations.
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There are many ways how to specify the order (indeed, infinitely many), most of the attention (as far
as the present author can see) lies with the following three.

4.2. Pseudo-differential operators. When all derivatives are taken to the right (so called anti-Wick
ordering) this leads to the definition of pseudo-differential operators. By symbol

−→g (A,B) :=

∞∑
j,k=0

∂k1∂
j
2g(0, 0)

j!k!
AkBj ,

we mean that second argument always takes precedent over the first one. In our case, to a polynomial
g(q, p) is assigned the operator −→g

−→g (q,−i~∂q) :=

∞∑
k=0

∂k2 g(q, 0)

k!
(−i~∂q)k.

Observe that on exponentials the action is computed

−→g (q,−i~∂q)eαq = g(q,−i~α)eαq,

for all α ∈ C. And if we can expand the function f into exponentials via Fourier transform and its inverse
we get

−→g (q,−i~∂q)f(q) =
1√
2π

∞∫
−∞

f̂(ξ)g(q, ~ξ)eiξqdξ := Ψgf.

Since the integral representation is more general it usually serves as a definition of pseudo-differential
operator Ψg.

Now let f(q, p) :=
∑∞
k=0 fk(q)pk and q(q, p) :=

∑∞
k=0 gk(q)pk some polynomials of unspecified degree.

We have
−→g (q,−i~∂q)

−→
f (q,−i~∂q) =

(
g0 − i~g1∂q +O(~2)

) (
f0 − i~f1∂q +O(~2)

)
,

= g0f0 − i~ (f0g1∂q + f1g0∂q + f1g
′
0) +O(~2).

Thus
−→g
−→
f −

−→
f −→g = −i~ (f1g

′
0 − g1f

′
0) +O(~2) = −i~

−−−→
{g, f}+O(~2).

So, indeed, the asymptotical commutation relation (at least for polynomials) is fulfilled.
Equating the coefficients at the same power of ~ in the equality

−→g (q,−i~∂q)
−→
f (q,−i~∂q) =

∞∑
k=0

~k
−−−−−→
Ck(g, f)(q,−i~∂q),

we get

Ck(g, f)(q, p) :=
(−i)k

k!
(∂kpf(q, p))(∂kq g(q, p)).

Let us define

f ∗ψ g =

∞∑
k=0

(−i~)k

k!
(∂kpf(q, p))(∂kq g(q, p)).

We can easily check that such a formal power series satisfies all the necessary properties required for a
star product.

So even though pseudo-differential operators cannot serve as an example for deformation quantization
since they are not in general self-adjoint – in fact

−→r (q,−i~∂q)† = −→r (−i~∂q, q),

there is a good star product that goes with them.
10



4.3. Weyl calculus. The one ordering that does produce self-adjoint operators is the so-called Weyl
calculus. It is a ‘fair’ ordering, where all orderings are considered simultaneously by taking their arithmetic
mean. For example pq → − i~

2 (q∂q + ∂qq), q2p→ − i~
3

(
q2∂q + q∂qq + ∂qq

2
)

and so on. We will denote an
operator with such ordering ←→g (q,−i~∂q).

To get an assignment for an arbitrary monomial qkpl one can expand the expression (A + B)k+l for
some non-commutative A,B and take those term containing exactly k A-s and l B-s and then substitute

A = q and B = −i~∂q. There will be precisely

(
k + l
l

)
such terms hence one should divide by this

number.
From this one can see, that for polynomials of a special form (rp+ sq)k the assignment is simply

(sq + rp)k → (sq − i~r∂q)k.

Hence for any polynomial g of one variable we have

g(sq + rp)→ g(sq − i~r∂q),

and it is not difficult to see that this can be computed as an ordinary differential operator, since it holds

(7) g(sq − i~r∂q) = e−i s~r
q2

2 g(−i~r∂q)ei s~r
q2

2 .

By analogy we can define the assignment further to entire functions, exponentials especially to get

esq+rp → e−i s~r
q2

2 e−i~r∂qei s~r
q2

2 ,

when acted on polynomials the action is well defined and moreover easily computed, since on polynomials
f the exponential is clearly acting as a translation

e−i~r∂qf(q) = f(q − i~r),

We hence define

esq−i~r∂qf(q) = e−i s~r
q2

2 e−i~r∂qei s~r
q2

2 f(q) = e−i s~r
q2

2 ei s~r
(q−i~r)2

2 f(q − i~r),

thus
esq−i~r∂qf(q) := esq−

1
2 i~srf(q − i~r).

Finally, an ‘arbitrary’ function g(q, p) can be represented as an exponential of this kind via Fourier
transform

g(q, p) =
1

2π

∞∫
−∞

∞∫
−∞

(F1F2g)(ξ1, ξ2)eiξ1q+iξ2pdξ1dξ2,

hence we have (for s = iξ1, r = iξ2)

←→g (q,−i~∂q)f(q) =
1

2π

∞∫
−∞

∞∫
−∞

(F1F2g)(ξ1, ξ2)eiξ1q+
1
2 i~ξ1ξ2f(q + ~ξ2)dξ1dξ2

=
1√
2π

∞∫
−∞

(F2g)(q +
1

2
~ξ2, ξ2)f(q + ~ξ2)dξ2

=
1√
2π~

∞∫
−∞

(F2g)

(
ξ2 + q

2
,
ξ2
~

)
f(ξ2)dξ2

=
1

2π~

∞∫
−∞

∞∫
−∞

g

(
ξ + q

2
, p

)
f(ξ)e−ip ξ~ dpdξ =: Wgf.

With same technique as in previous section we can check that Commutation relation is indeed satisfied
(at least for polynomials). Also one can proceed further and compute terms of the associated star product
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∗W but they are quite complicated and we will not endeavor to derive them here. Nevertheless, the Weyl
calculus constitutes an example of deformation quantization.

4.4. Toeplitz operators. Last interesting ordering is when all derivatives are taken to the left (the
so-called Wick ordering):

←−g (A,B) :=

∞∑
k=0

Bk
∂k2 g(A, 0)

k!
,

Consider a polynomial g(z, z̄) in complex coordinates. The action of an operator ←−g (z, 1/α∂z) can be
computed as follows:

←−g
(
z,

1

α
∂z

)
f(z) =

∞∑
k=0

∂kz ∂
k
x̄

αkk!
g(z, x̄)f(z)|x=0 =

∞∑
k=0

∂kx∂
k
x̄

αkk!
g(z + x, x̄)f(z + x)|x=0

e
∂x∂x̄
α g(z + x, x̄)f(z + x)|x=0.

Remmeber, that the operator e
∂x∂x̄
α is the heat equation operator, i.e. the expression above is the solution

of the equation

ut =
1

4
∆xu, u|t=0 = g(z + x, x̄)f(z + x),

at the time t = 1
α . Substituting into the fundamental solution of the heat equation and letting x = 0 we

thus get

←−g
(
z,

1

α
∂z

)
f(z) =

∫
C

g(x+ z, x̄)f(x+ z)e−αxx̄
α

π
dλ(x)

(8) =

∫
C

g(x, x̄)f(x)eαx̄zdµα(x, x̄) =: Tgf,

where dµα(x, x̄) := e−αxx̄ απdλ(x).
Again, the last integral is usually taken as a definition of the so-called Toeplitz operator Tg acting on

f .
Toeplitz operators have the advantage over the Weyl calculus that they can be readily extended to

a more general domains in C (and Cn) since they not require the notion of Fourier transform which is
exclusive property of Euclidean space and few other spaces.

What they do in fact require is the notions of (weighted) Bergman kernel and the (weighted) Bergman
projection which are both definable in arbitrary domains.

Why this is so? The space Fα of all entire functions in C that are square integrable with respect to the
measure dµα(x, x̄) forms the weighted Bergman space (it is a Hilbert space with continuous evaluation
functional). Associated Bergman kernel introduced in Section 2 takes form

Kα(z, x) = eαzx̄.

Remember that Bergman kernel satisfies the reproducing property

f(z) =

∫
C

f(x)Kα(z, x)dµα(x, x̄), ∀f ∈ Fα.

The last integral, however, can be applied to a more general functions than just members of Fα. Denote

(Pαf)(z) :=

∫
C

f(x, x̄)Kα(z, x)dµα(x, x̄).

Clearly, the result for a function f from L2 (C,dµα) is an entire function, hence by reproducing property
we have P 2

αf = Pαf , thus the operation Pαf constitute a projection and is named Bergman projection.
With these definitions in hand we see, that the action of Toeplitz operators (8) can be written

Tgf = (Pαgf)(z).
12



This ‘coordinate free’ definition makes sense in all Bergman spaces. With bounded symbols g, the operator
Tg is even continuous with ‖Tg‖ ≤ ‖g‖∞.

But to obtain a deformation quantization from this, one has to face some obstacles first. The direct
approach of assigning g(q, p) → ←−g (q,−i~∂q) is no good since α is in this case purely imaginary and we
do not get a particularly rich Bergman space – Fα would actually contain only the zero function. Also,
operators←−g (q,−i~∂q) suffer the same condition as pseudo-differential operators of being not self-adjoint.
In fact, those two operators are dual to each other.

The standard workaround is to first transform a polynomial g(q, p) into complex coordinates g(q −
ip, q + ip) and then assign

←−g (q − ~∂q, q + ~∂q).
Clearly, this is self-adjoint:

←−g (q − ~∂q, q + ~∂q)† = −→g (q + ~∂q, q − ~∂q) =←−g (q − ~∂q, q + ~∂q).

This neat trick actually works for every ordering not just Wick ordering.
Consider now the so-called Bargmann transform

(βf)(z) :=
1√
2π~

∞∫
−∞

f(q)e−
1
2~ q

2+ 1
~ qz−

1
4~ z

2

dq,

which is a unitary isomorphism between L2(R) and the Fock space Fα with α = 1
2~ . It is an easy exercise

to show that Bargmann transform posses the following properties

2~∂z(βf)(z) = (β(q + ~∂q)f)(z),

z(βf)(z) = (β(q − ~∂q)f)(z).

So we can see that
←−g (q − ~∂q, q + ~∂q)f(q) = β−1←−g (z, 2~∂z)(βf)(z) = β−1Tg(βf)(z),

where the Toeplizt operator Tg depends also on parameter α = 1
2~ even though it is not explicitly

mentioned. It is better in this setting to consider the Fock space Fα rather then L2(R) space as our
Hilbert space and to move from p, q coordinates to z, z̄ coordinates. Deformation quantization problem
translates in this notation to a problem of assigning to functions f(z, z̄) operators (not necessarily self-
adjoint) Qf on Fα with α = 1

2~ such that

(1) Qz = z, Qz̄ = 1
α∂z, Q1 = I.

(2) f → Qf is linear.
(3) [Qf , Qg] ∼ 1

αQ{f,g}, (α→∞),

where the Poisson bracket is defined {f, g} := ∂z̄f∂zg − ∂z̄g∂zf .
We can see that case Qf := Tf fulfills these requirements since in case of polynomial symbol f = g(z, z̄)

we still have

Tg =←−g
(
z,

1

α
∂z

)
,

and the complex commutation relation (3) can be verified directly (for polynomials) as in the section
about pseudo-differential operators. The associated star product is almost the same, namely

f ∗T g =

∞∑
k=0

(−1)j

αjj!
(∂
k
g)(∂kf).

This is, actually, a consequence of the fact that Toeplitz operators are adjoint to the pseudodifferential
ones

←−g
(
z,

1

α
∂z

)†
= −→g

(
z,− 1

α
∂z

)
.

Generally, if there is a star product defined

QfQg = Qf∗g,
13



the star product for the adjoint operators

Q†fQ
†
g = Q†f∗†g,

takes form
f ∗† g = g ∗ f,

which can be seen from the equality

Q†f∗g = (QfQg)
†

= Q†gQ
†
f = Q†g∗†f .

Hence
f ∗T g = g ∗ψ f,

as claimed.
Analogously, we can define even pseudo-differential operators and Weyl calculus in this setting by the

following rules

−→g
(
z,

1

α
∂z

)
f(z) =

∫
C

f(x)g(z, x̄)eαx̄zdµα(x, x̄),

←→g
(
z,

1

α
∂z

)
f(z) =

∫
C

f(x)g

(
x+ z

2
, x̄

)
eαx̄zdµα(x, x̄).

4.5. Berezin transform. As been said before, the Topelitz quantization (that is the assignment f → Tf )
is best suited (from given examples at least) to be generalizable to other domains in C, since the Toeplitz
operator Tg can be defined on arbitrary weighted Bergman space A2(Ω) – i.e. the space of all holomorphic
function on Ω such that

‖f‖2 :=

∫
Ω

|f(x)|2 w(x)dλ(x) <∞,

in an intrinsic way, concretely
Tgf := P (gf), ∀f ∈ A2(Ω),

where P is the corresponding Bergman projection, that is

(Pf)(z) =

∫
Ω

f(x)K(z, x)w(x)dλ(x),

and K(z, x) is Bergman kernel. What is unclear, however, is how to choose the weight function w such
that the complex commutation relation is fulfilled. In the case Ω = C the weight turned out to be
w(x) = e−αxx̄ απ .

Let our domain admit a defining function ψ that is Ω = {x ∈ C : ψ(x) > 0} with dψ 6= 0 on the
boundary ∂Ω. Let on a neighborhood of Ω also holds

∂x∂x̄ ln
1

ψ
> 0,

in other words the function − lnψ is strictly subharmonic.
It can bee proved (see [21, §4.7]) that under such conditions the correct weight can be chosen essentially

as a power of the defining function, i. e.

w = cαψ
α∂∂ lnψ,

where cα is some constant to ensure that the corresponding measure w(x)dλ(x) is a probabilistic one
(otherwise we cannot have T1 = I). In the case Ω = C the most simple function that satisfies the strict
subharmonicity condition is − lnψ = |x|2, −∂x∂x̄ lnψ = 1 and we can see that ψ = e−|x|

2

is a defining
function for C and the corresponding weight is w(x) = cαe

−α|x|2 as promised. In the case of the unit disk
Ω = D, the defining function is ψ = 1− |x|2, so we have

w(x) = cα

(
1− |x|2

)α−2

.
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The Poisson bracket for the domain Ω is defined

{f, g} := − 1

∂z̄∂z lnψ
(∂z̄f∂zg − ∂z̄g∂zf) .

It is easy to see that the defining function ψ we require always exists in case of one dimension (for
bounded domains we can take ψ(z) to be a smooth function that coincides in a neighborhood of the
boundary with the Euclidean distance of z to the boundary). In higher dimension the condition that
−∂x∂x̄ lnψ > 0 is replaced by the condition that the function − lnψ is strictly plurisubharmonic – in
other words we require that our domain is strictly pseudoconvex.

The correction factor for the Poisson bracket in higher dimensions is not − 1
∂z∂z̄ lnψ but gj,k– the inverse

of the matrix gj,k of second derivatives for − lnψ,

gj,k := −∂jz∂kz̄ lnψ.

Essentially, the result for correct weight remains the same, namely

(9) w(z) = cαψ
α det

(
∂zj∂z̄k lnψ

)
.

One can even generalize this approach to any Kähler manifold (see [2]).
The most difficult part is to check that Commutation relation holds

(10) [Tf , Tg] =
1

α
T{f,g} +O

(
1

α2

)
, (α→∞),

but, remarkably, this problem can be linked (to a great extent) with the problem of establishing the
asymptotic expansion of so-called Berezin transform. Berezin transform Bα is defined in an intrinsic way

Bαf =
〈fKz,Kz〉
〈Kz,Kz〉

.

The notion concerns the problem of dequantization, sort of inverse problem to quantization, i.e. how
to assign to operators on some Hilbert space Q their symbols Q̃

Q→ Q̃.

In a Bergman space setting an example of intrinsically definable, one-to-one assignment is Berezin symbol,

Q̃(z) =
〈QKz,Kz〉
〈Kz,Kz〉

.

The Berezin symbol for Toeplitz operators Q = Tf is precisely Berezin transform.
Obviously, if we first quantize a function f to Tf and then dequantize it T̃f = Bαf we want to obtain

the same physics, i.e.
Bαf → f, (α→∞).

Let us assume that we have in addition a full asymptotic expansion for Bα of the special form

(11) Bαf ≈ I +
1

4α
∆̃f +

∞∑
k=2

Qkf, (α→∞),

where Qk are some linear differential operators

Qkf =
∑

α,β multiindices

ck,α,β∂
α∂

β
f,

and ∆̃ is the Laplace-Beltrami operator

∆̃ =
∑
j,k

gj,k
∂2

∂zk∂z̄j
.

Then we can say two things. First, we can immediately construct a star product by the coefficients of
the operators Qk in the way

f ∗Bt g =

∞∑
k=0

1

αk
Ck(f, g),
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where
Ck(f, g) =

∑
α,β multiindices

ck,α,β∂
αg∂

β
f.

The fact that Q1 is the Laplace-Beltrami operator means precisely that Commutation relation is
satisfied, so it is a star product. In addition, this star product is exactly same as the star product defined

via Berezin symbol, i.e. Q̃R̃ = Q̃ ∗B R. In other words

f ∗Bt g = f ∗B g.

And second, with some additional work we can establish

[Tf , Tg] ∼
1

α
T{f,g}, (α→∞),

i.e. verify Commutation relation for Toeplitz operators [21, §4,2, §4,3].
For our standing example – the one dimensional Fock space Fα, expansion of this kind, indeed, exists.

Actually, one can easily show that

Bα = e
∆
4α =

∞∑
k=0

∆k

4kαkk!
, (α→∞) .

For the unit disk D Berezin transform takes the form

(Bαf)(z) =

∫
D

f(x)
(1− |z|2)α

|1− x̄z|2α
(1− |x|2)α−2α− 1

π
dλ(x).

This time much more work is need, but it also holds

Bα = I +
1

4α
(1− |z|2)2∆ +O

(
α−2

)
, (α→∞).

M. Engliš proved (in [21]) that the assumption we made (11) about asymptotic expansion of Berezin
transform is justified for an arbitrary smoothly bounded strictly pseudoconvex domain in Cn. The proof
was partly based on the Feferman’s theorem concerning boundary behavior of Bergman kernels on strictly
pseudoconvex domains (1).

4.6. Harmonic Berezin transform. Bergman kernels and all notion connected to them, Berezin trans-
form especially, exist also in the setting of harmonic rather than holomorphic Bergman spaces, i.e. spaces
of all functions harmonic on some domain Ω ⊂ Rn which are square integrable, with respect to a weight if
necessary. The harmonic case is far from being understood. To the author knowledge only three domains
was insofar studied – the whole Rn, the unit ball Bn and the half-space Rn×R+. The continuity of point
evaluation functional is assured on those domains by the mean value property.

While harmonic Berezin transform may not be directly applicable to the problem of quantization, it
is still of great mathematical interested to study its asymptotic behavior and other properties.

Notably, the question of whether there is a similar asymptotic expansion as (11) is particularly ap-
pealing.

M. Engliš was able to prove for the case of harmonic Fock space Rn that remarkably this is the case,
even though the second term of the expansion is not the Laplace-Beltrami operator and the behavior is
not the same for all argument values. More precisely, he showed in 2009 [22] that the Bergman kernel
takes form

(12) Rα(x, y) = Φ2

(
−

n
2 − 1

;
n
2 − 1 n

2 − 1
− ;αux,y, αūx,y

)
,

where ux,y = x ·y+i

√
|x|2 |y|2 − (x · y)2 and the hypergeometric function of two variables Φ2 from Horn’s

list [4, §5.7.1] is defined

Φ2

(
−
c

;
b1 b2
− ;x, y

)
=

∞∑
j,k=0

(b1)j(b2)k
(c)j+k

xjyk

j!k!
.
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In the same paper he also showed, that the corresponding Berezin transform

(Bαf)(x) :=

∫
Rn

f(y)
R2
α(x, y)

Rα(x, y)
dµnα(y),

where

dµnα(y) = e−α|y|
2
(α
π

)n
2

dny,

has the expansion: For ∀f ∈ L∞(R2n) which is smooth in a neighborhood of x 6= 0 we have

(13) (Bαf)(x) ≈ f(x) +
1

α

(
n− 2

2

1

|x|2
x · ∇+

(n− 2)

4(n− 1) |x|2
(x · ∇)

2
+

1

4(n− 1)
∆

)
f(x) + . . . ,

with additional feature that for x = 0 the behavior changes abruptly

(Bαf)(0) ≈ f(0) +
1

4α
∆f(0) + . . .

Indeed, the terms in general asymptotic series are even singular for x = 0. This is an interesting occurrence
of the so-called Stokes phenomenon.

For the case of the unit ball Bn the Bergman kernel is given by

Rα(x, y) = F1

(
α+ n

2 + 1
n
2 − 1

;
n
2 − 1 n

2 − 1
− ;ux,y, ūx,y

)
,

where ux,y is as before and the first Appell function F1 [4, §5.7.1] is defined

F1

(
a
c

;
b1 b2
− ;x, y

)
:=

∞∑
j,k=0

(a)j+k
(c)j+k

(b1)j(b2)k
j!k!

xjyk.

For the case n = 2 the limiting behavior was confirmed to be as expected by C. Liu in 2007 [26]. That
is for f ∈ C(B2) we have,

Bαf → f uniformly as α→∞.
Subsequently, R. Otahalova in 2008 [27] generalized this result to an arbitrary dimension n ≥ 2.

The full asymptotic expansion of the Berezin transform for the unit ball Bn was provided by the
author in the paper [11] generalizing thus the work of Otahalova and confirming the same occurrence of
the Stokes phenomenon as in the harmonic Fock space case.

More precisely, there exists a full asymptotic expansion for the harmonic Berezin transform on the
unit ball Bn whose first two terms are

(Bαf)(x) = f(x)

(14) +
1

α

(
n− 2

2

1− |x|2

|x|2
x · ∇+

(n− 2)(1− |x|2)2

4(n− 1) |x|2
(x · ∇)

2
+

1

4(n− 1)
(1− |x|2)2∆

)
f(x) +O(α−2),

when x 6= 0 and

(Bαf) (0) ≈
∞∑
i=0

∆if(0)

4i
(
α+ n

2 + 1
)
i

(α→∞),

when x = 0.
The method used to prove this result differs substantially from methods used in [26], [27] and [22].

Notably, Otahalova’s approach gives no hope to achieve this (at least as far as the present author can
see), on the other hand it does not look entirely impossible to exploit the tools of the paper [22] to obtain
our result but only for even dimensions.

Our approach, as we will show in the next section, is based on representing the Berezin transform
in terms of generalized hypergeometric functions which asymptotic behavior is either known or can be
established by more or less routine computations. Interestingly, the distinction between odd and even
dimension, which burdens heavily [27] and [22], does not prove itself as important in this setting.
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5. Contents of the papers [10] and [11]

5.1. Asymptotic behavior of Bergman kernels with logarithmic weight. The aim of [10] is to
describe boundary behavior of Bergman kernel associated to the holomorphic Bergman space

A2(D) =

f ∈ O (D) :

∫
D

|f(z)|2w(z)dλ(z) ≡‖ f ‖2<∞

 ,

with respect to the weights whose asymptotic expansions as |z| → 1 are of the form:

w(z) ≈
(

1− |z|2
)α ∞∑

k=0

wk lnβ−k
1

1− |z|2
,

where α > −1 and β is any real number. This is in turn achieved by first establishing the asymptotic
expansion for the special case of weights

w(z) =
(
1− |z|2

)α(
γ + ln

1

1− |z|2

)β
,

where γ > 0.
Due to the radiality hypothesis, it is known that the monomials {zn}n≥0 form an orthogonal basis in

A2(D), and from this it follows that Bergman kernel is given by

K(z, ζ) =

∞∑
n=0

(ζz)n

‖ zn ‖2
≡ K(ζz).

The goal is to describe the behavior of K(ζz) as ζz → 1. Our main results are the following:

THEOREM . Let f(n) =
∫
D
|z|2n w(|z|2)dλ(z), where

w(t) = (1− t)α
(
γ + ln

1

1− t

)β
,

α > −1, γ > 0 and β ∈ R. The asymptotic expansion of the series

K(z) =

∞∑
n=0

zn

f(n)
,

for z → 1 is:

K(z) ≈
ln−β 1

L

Lα+2

(
α+ 1− β ln−1 1

L
+ d2 ln−2 1

L
+ d3 ln−3 1

L
+ . . .

)
,

where L = ln 1/z and the coefficients dk are given by

dk =

k∑
j=0

(
−β − j
k − j

)
Γ(k−j)(α+ 2)cj

for c0 = 1
α! and cj such that

α!cj = −
j∑
i=1

(
β
i

)
(γ − ∂α)

i
Γ(α+ 1)cj−i.

THEOREM . The same asymptotic expansion as in the previous theorem holds for weight functions of the
form:

w(t) ≈ (1− t)α
∞∑
k=0

wk

(
γk + ln

1

1− t

)β−k
(t→ 1),
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α > −1, γk > 0 and β ∈ R, with coefficients cj given by c0 = 1
w0α! and

w0α!cj = −
j∑
i=1

i∑
l=0

(
β − l
i− l

)
wl (γl − ∂α)

i−l
Γ(α+ 1)cj−i.

The proof of these theorems uses the following lemma proved in the paper witch describes the asymp-
totic expansion of norm squares f(n) :=‖ zn ‖2.

LEMMA . As n→∞,
nα+1

lnβ n
f(n) ≈

∞∑
k=0

(
β
k

)
(−1)k

lnk n
(∂α − γ)

k
Γ(α+ 1)

for α > −1, γ > 0 and β ∈ R.

Both the theorems and the lemma are proved by an ad hoc argument using just bare hands essentially
following the idea behind the Laplace method. The only reference made is to an Evgrafov’s book for the
purpose of replacing the series representation of Bergman kernel by an appropriate integral.

Finally, at the end of the paper, we propose the following open problem. When the norm squares f(n)

are replaced by its principal term lnβ n
nα+1 the corresponding approximation of Bergman kernel

Fα,β(z) :=

∞∑
n=2

znnα+1

lnβ n
,

extends analytically to the entire complex plane with the interval [1,+∞] removed; this is immediate
from the integral representation

(15)
∞∑
n=k

znnα+1

lnβ n
=

1

2πi

c+i∞∫
c−i∞

sα+1

s[k] lnβ s

∞∫
1

zkk!us

(u− z)k+1
duds,

where k is an integer greater than α + 2, k − 1 < c < k and s[k] := s(s− 1)(s− 2) . . . (s− k + 1), which
is easily proved using the Residue Theorem. In particular, Fα,β is C∞ on the closed unit disc except the
point z = 1.

Unfortunately, we were unable to prove that the latter is true also for the kernel function K(z),
although we believe that this is the case:

Conjecture. K ∈ C∞(D \ {1}).

As it often happens in mathematics, the problem can be linked to a problem of seeking roots of some
function. Concretely, if one can prove that the function f(n) has no zeros in the right half-plane (or at
least in the set Ren > x0 for some fixed x0) a similar integral representation as (15) can be established.
But at the moment the author has no idea how to approach this problem.

5.2. Berezin transform on harmonic Bergman spaces on the real ball [11]. Consider the har-
monic Bergman space L2

harm (Bn,dµnα) on the unit ball Bn in Rn, consisting of all functions that are
harmonic and square integrable with respect to the measure

dµnα(y) := cα(1− |y|2)αdny, α > −1,

where dny is the usual n-dimensional Lebesgue measure and the coefficient cα is chosen so that Bn has
measure 1. Specifically,

cα =
Γ
(
α+ n

2 + 1
)

πn/2Γ(α+ 1)
.

The main goal of this paper is to establish the asymptotic expansion as α → ∞ of the associated
Berezin transform

(16) (Bαf)(x) :=

∫
Bn

f(y)
R2
α(x, y)

Rα(x, x)
dµnα(y),
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where Rα(x, y) is the corresponding Bergman Kernel which can be represented in terms of the Appell F1

function

F1

(
a
c

;
b1 b2
− ;x, y

)
:=

∞∑
j,k=0

(a)j+k(b1)j(b2)k
(c)j+kj!k!

xjyk,

as

Rα(x, y) = F1

(
α+ n

2 + 1
n
2 − 1

;
n
2 − 1 n

2 − 1
− ;ux,y, ūx,y

)
,

where ux,y = x · y + i

√
|x|2 |y|2 − (x · y)2.

The main result is the following theorem.

THEOREM . For x ∈ Bn, x 6= 0, n > 1, and f ∈ C∞(Bn), there exist differential operators Qi :=

Qi

(
∆, x · ∇, |x|2

)
, involving only the Laplace operator ∆, the directional derivative x ·∇ and the quantity

|x|2, such that

(Bαf) (x) :=

∫
Bn

f(y)
R2
α(x, y)

Rα(x, x)
dµnα(y) ≈

∞∑
i=0

(Qif)(x)

αi
(α→∞),

where Q0 = 1 and

Q1 =
n− 2

2

1− |x|2

|x|2
x · ∇+

(n− 2)(1− |x|2)2

4(n− 1) |x|2
(x · ∇)

2
+

1

4(n− 1)
(1− |x|2)2∆.

Finally, for x = 0 it holds

(Bαf) (0) ≈
∞∑
i=0

(∆if)(0)

4i
(
α+ n

2 + 1
)
i

(α→∞).

The proof is based on representing the Berezin transform in terms of generalized hypergeometric
functions

pFq

(
a1 . . . ap
c1 . . . cq

;x

)
=

∞∑
k=0

(a1)k . . . (ap)k
(c1)k . . . (cq)k

xk

k!
,

and then make use of their many known properties including asymptotic expansions for large parameters
in some cases. Concretely, we exhibit a connection between the Berezin transform of a polynomial and a
linear combination of functions

(17)
5F4

(
α̃ α̃
α̃+ j1

n− 2
n
2 + j2

n− 2
n
2 + j3

n
2 − 1
n+ j4

; |x|2
)

2F1

(
α̃ n− 2
n
2 − 1

; |x|2
) ,

where α̃ = α+ n
2 + 1 and j1, j2, j3, j4 are some integers.

Unfortunately, the needed asymptotic expansion of 5F4 for large parameters was at the time not to be
found in the literature (to the best of the authors knowledge). Hence, we gave in the paper the proof of
the following lemma.

LEMMA . Let b1, b2, b3 > 0 be positive real numbers, one of them strictly less than the other two. Let
α− a− γ 6∈ Z, −ci 6∈ N0 and x ∈ (0, 1). Then we have

5F4

(
α α b1 b2 b3
α+ a c1 c2 c3

;x

)
≈

3∏
i=1

Γ(ci)

Γ(bi)

(αx)−γ

(1− x)α−γ−a

(
1 +

∞∑
k=1

dk
αk

)
(α→ +∞),

where γ =
∑3
j=1(cj − bj) and dk are constants independent of α.
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The lemma includes as a special case the asymptotic expansion of Gauss hypergeometric function 2F1

in the denominator of (17) which is also needed, though its expansion is well known.
Finally, along the way we proved the following theorem which bears some significance of its own, since

it provides means of computing the Bergman projection of more general functions than just harmonic
ones:

THEOREM . For ∀p ∈ N0, β ≥ α and f ∈ Cp (Bn) : ∆f = 0 it holds:∫
Bn

Rα(x, y)f(y)(x · y)pdµnβ(y)

=
p!

2p

∑
j+2l+m=p

|x|2(j+l)
(α̃)j(2b)j

j!m!l!(β̃)j+m+l(b)j
3 ((x · ∇)mf)3

(
α̃+ j 2b+ j b

β̃ + j + l +m b+ j 2b
;x

)
,

where b := n
2 − 1 and x̃ := x+ n

2 + 1.
Note that in the case β = α and p = 0 this reads∫

Bn

Rα(x, y)f(y)dµnα(y) = f(x),

thus we recover the reproducing property.
Here we have introduced the “hypergeometrization” mfn of a function f , which is a special case of a

Hadamard product and which appears naturally in this setting.
More precisely, for a real (or complex) function f of a real argument we define its hypergeometrization

by the series

pfq

(
a1 . . . ap
c1 . . . cq

; t

)
:=

∞∑
m=0

tmf (m)(0)

m!

(a1)m . . . (ap)m
(c1)m . . . (cq)m

,

whenever this defines some analytic function in a neiqhbourhood of zero – i.e. the radius of convergence
R is strictly greater than zero and none of the lower parameters ci is a non-positive integer.

And for a real function f(x) of a vector argument, x ∈ Rn, n > 1 we define

pfq

(
a1 . . . ap
c1 . . . cq

;x

)
:= pfq

(
a1 . . . ap
c1 . . . cq

; tx

)∣∣∣∣
t=1

,

that is the hypergeometrization is performed on the real function f(tx) of the real argument t and if the
corresponding radius of convergence is strictly grater than 1 then the function is evaluated at the point
t = 1.
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6. Presentations related to the thesis

(1) 21th International Workshop on Operator Theory and Applications, IWOTA, July 2010, Berlin,
Germany.
Talk: The asymptotic behavior of Bergman kernels with logarithmic weight

(2) Göttingen 2011: Summer School. Analysis – with Applications to Mathematical Physics, 29.
8.–2. 9. Germany.
Talk: The asymptotic behavior of Bergman kernels with logarithmic weight.

(3) International Conference on Differential Equations, Difference Equations and Special Functions,
3.9-7.9, 2012, Patras, Greece.
Talk: Harmonic Bergman projection formula.
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