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Oponenti: Prof. RNDr. Frantǐsek Neuman, DrSc.
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1. Introduction

The thesis is based on four independent papers [P1] – [P4]. The common subject is
the theory of discrete dynamical systems generated by continuous maps of a compact
interval and a circle into itself.

The first part (Section 3) of the thesis provides a “universal” continuous function
of the interval. This solves a problem formulated by A. M. Bruckner (cf., e.g.,
[Br]). The second part (Section 4) gives a characterization of transitive points
for continuous transitive maps of the interval. The third part (Section 5) extends
some recent results from the class of continuous maps of the interval to the class of
continuous maps of the circle. First we provide a “universal” continuous function of
the circle and give a characterization of transitive points for continuous transitive
maps of the circle. At the end of the section we give a geometric characterization
of ω-limit sets and show that the family of ω-limit sets is closed with respect to the
Hausdorff metric.

2. Basic terminology and notation

Throughout this abstract the set of continuous maps from a compact metric space
Y into itself will be denoted by C(Y, Y ). Symbols I and S denote the unit interval
[0, 1] and the circle {z ∈ C; |z| = 1}, respectively. By X we denote either the
interval I or the circle S. Recall that the trajectory of a point x under a map f is
the sequence {fn(x)}∞n=0, where fn is the n-th iteration of f . If there is k ≥ 1 such
that fk(x) = x and fn(x) 6= x for every n = 1, . . . , k − 1 then x is a periodic point
with the period k. The set of limit points of the trajectory of x is called ω-limit set
and we denote the set by ωf (x). By ωf we denote the system of ω-limit sets ωf (x)
where x ∈ X. The map f is transitive if for every two non-empty open sets V,W
there is a positive integer n such, that fn(V ) ∩W 6= ∅. The point x ∈ X is called
transitive point of the map f if the point x has a dense trajectory in X. The set of
transitive points of f is denoted by Tr(f).

Denote by e : R → S the natural projection defined by e(x) = exp(2πix). Note
that the map ẽ : (0, 1) → S \ {e(0)} obtained by restricting e to the interval (0, 1),
is a homeomorphism. We say that ẽ(x) ≤ ẽ(y) whenever x ≤ y. For an interval
A ⊂ S \ {e(0)} a point a is called the left endpoint, resp. the right endpoint, of A
if a ≤ x, resp. x ≤ a, for every x ∈ A. We say that a set A ⊂ S is T -side or
T -unilateral neighborhood (T means either “left” or “right”) of an x ∈ S if the set
A is a closed interval and the point x is T endpoint of the set A.

Let U = U0 ∪ . . . ∪ UN−1 be the union of pairwise disjoint non-degenerate closed
intervals and f ∈ C(S,S). For any set K ⊂ U let fU(K) = f(K) ∩ U (this may be
empty). Inductively define fn

U(K) = fU(fn−1
U (K)). Let K̃ ≡ K̃(U) =

⋃∞
i=1 f

i
U(K);
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although K̃ depends on U , to avoid convoluted notation we use K̃ whenever the
set U is evident. Let A ⊂ S be a closed set and x ∈ A. We say that a side T
of a point x is A-covering if for any union of finitely many closed intervals U such
that A ⊂ Int(U) and any closed T -unilateral neighborhood V (x) there are finitely
many components of Ṽ (x) such that the closure of their union covers A. If T is
an A-covering side of x then any T -unilateral neighborhood V (x) is also said to be
A-covering. If every x ∈ A has an A-covering side we call the set A locally expanding
according to the map f .

A Cantor set is any nowhere dense non-empty compact set without isolated points.
A homeomorphic copy of a set A ⊂ X is a copy with respect to an order-preserving
homeomorphism. In this abstract by interval we mean a non-degenerate one, excep-
tions are stated explicitely.

For more terminology see standard books like [Al] or [Bc].

3. “Universal” dynamical system

The following characterization of ω-limit sets is due to Agronsky et al. [Ag]: A
non-empty compact set F ⊂ I is an ω-limit set of a map f ∈ C(I, I) if and only if F is
either a finite collection of compact intervals, or nowhere dense. A characterization
of sets in ωf , for any fixed continuous f , is given in [Bk]. The system ωf equipped
with the Hausdorff metric, is a compact set [Bk].

In view of the above mentioned facts there is the following natural problem: how
large can the system ωf be? In [K] Keller gives a simple example of a function
f : I → I continuous everywhere except for a single point such that any nowhere
dense compact set F ⊂ I has a homeomorphic copy F̃ in ωf ; the corresponding
homeomorphism can be extended to the whole of I. By Evans et al. [E], if f ∈ C(I, I)
has periodic trajectories of all periods then any non-empty countable compact set has
a homeomorphic copy in ωf . This homeomorphism, however, cannot be in general
extended from F to the whole interval I. In this section we state a theorem that
there is a “universal” continuous function, up to homeomorphisms of the interval,
solving a problem formulated by A. M. Bruckner (cf., e.g., [Br]).

Theorem A. There is a map f ∈ C(I, I) such that, for any non-empty compact
set F ⊂ I which is either nowhere dense or is the union of finitely many intervals,
there is a homeomorhism ϕ from I to I such that ϕ(F ) is an ω-limit set of f .

Clearly, the condition “up to homeomorphism” cannot be omitted, and the func-
tion involved cannot be simple. In our case f is strongly irregular, having infinite
variation on any open interval which intersects a Cantor set Cf . Moreover, the
ω-limit sets of f which are contained in Cf , form our universal system for infinite
nowhere dense ω-limit sets.

4. Structure of sets of transitive points

It is well-known that for a continuous map f of a compact metric space Y ,
the set Tr(f) of transitive points of f , i.e. the set of points in Y with dense

ii



trajectory, is a dense Gδ set. The argument is straightforward: Denote by B a
countable base of Y . The set of transitive points of the map f is then of the
form Tr(f) =

⋂
G∈B

⋃∞
n=1 f

−n(G) and therefore, a Gδ set, which is dense since any⋃∞
n=1 f

−n(G) is dense.

But, not every dense, Gδ set is a set of transitive points of a continuous map. In
this section we give a characterization of sets of transitive points, solving a problem
formulated by L’. Snoha.

Theorem B. A set T ⊂ I is a set of transitive points for a continuous map f : I → I
if and only if I \ T is a first category set, Fσ and c-dense in I.

In paper [P3] we give two different proofs of the theorem. The first proof is based
on two Sharkovsky’s results (see [S]) and is not trivial. The second proof is more
elementary.

5. Dynamical systems on the circle

Since a compact interval and a circle are both one-dimensional connected compact
sets, continuous maps of the interval and continuous maps of the circle have many
properties in common. However to transfer results from the interval to the circle,
we usually have to make some modifications that do not have to be seen at once.
A good example is the classical result of the continuous maps of the interval, the
Sharkovsky’s theorem (see [Bc]). The theorem does not hold for the maps of the
circle in this classical version and it has to be modified for this class of maps (see
[Bc]).

Recall that X denotes either the compact unit interval or the unit circle S.

Note that in Section 3 we mentioned a known fact (see [Ag]): a non-empty com-
pact set F ⊂ I is an ω-limit set of a map f ∈ C(I, I) if and only if F is either a finite
collection of compact intervals, or nowhere dense. The following theorem extends
this fact to C(X,X).

Theorem C. A non empty compact set F ⊂ X is an ω-limit set of a map f ∈
C(X,X) if and only if F is either a finite collection of compact intervals or a nowhere
dense set.

From Section 3 we have the “universal” function of the interval. In this section
we construct a “universal” continuous function of the circle. Denote the “universal”
function of the interval I by h. Consider a function ψ by shrinking the function
h from [0, 1] to [1/3, 2/3] and extended it linearly to the whole circle so that ψ is
continuous and ψ(0) = 0 and ψ(1) = 1. To finish the construction denote g =
e ◦ ψ ◦ (e|[0,1))

−1 where e is the natural projection. Corresponding theorem is the
following one.

Theorem D. There is a map g ∈ C(X,X) such that for any f ∈ C(X,X) and any
ω-limit set ωf (x) 6= X, there is a homeomorphism ϕ from X into X and a point
y ∈ X such that ϕ(ωf (x)) = ωg(y).

iii



The theorem cannot be further improved by extending the function to cover even
the set F = X. The case F = S is not possible, because the only homeomorphic
copy is F and a function g ∈ C(S,S) possessing this ω-limit set cannot have any
other ω-limit set.

Section 4 gives us a characterization of the sets of transitive points for continuous
maps of the interval. Extension of the theorem to the class C(X,X) is given in the
following theorem.

Theorem E. A set T ⊂ X is a set of transitive points for a map f ∈ C(X,X) if
and only if X \ T is a first category, Fσ set c-dense in X or T = X and X = S.

In [Bk] Blokh, Bruckner, Humke and Smı́tal gave geometric characterization of
ω-limit sets of maps in C(I, I) and proved that the family of ω-limit sets of a map
in C(I, I) is closed with respect to the Hausdorff metric. We extend these results to
the class C(X,X).

Theorem F. Let f be a map in C(X,X). Then the family of all ω-limit sets of f
endowed with the Hausdorff metric is compact.

The following theorem is a criterion for a set to be an ω-limit set.

Theorem G. Let f be a map in C(X,X). A closed set A ⊂ X is an ω-limit set if
and only if it is locally expanding.

The next theorem is a stronger generalization of old Sharkovsky’s results (see [S]).

Theorem H. Let {ωn}∞n=1 = {ωf (xn)}∞n=1 be a sequence of ω-limit sets of a contin-
uous map f ∈ C(X,X) and let a point a has a side T , such that for any T -unilateral
neighborhood V of a, there exists a positive integer N such that for each n ≥ N , the
trajectory of xn enters V infinitely many times. Then

⋂∞
k=1

⋃∞
n=k ωn is an ω-limit

set.
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Slovakia, May 7 – 10, 1998. Talk on: ”An omega-limit set of universal function on
[0, 1].”

[10] European Conference on Iteration Theory – ECIT 98, Muszyna, Poland,
August 30 – September 5, 1998. Invitation. Talk on: “A universal dynamical
system generated by a continuous map of the interval.”

[11] 23th Summer Symposium in Real Analysis, Ĺodź, Poland, June 21 – 26,
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