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1 Introduction

In several papers and books one can find that the next four conditions for a contin-
uous map f of the interval are equivalent:

(P1) f has zero topological entropy;

(2) the set of periodic points of f is a G; set (countable intersection of open sets);
(P3) the set of recurrent points of f is an F, set (countable union of closed sets);
(P4) f is Lyapunov stable on the set of its periodic points.

These results were published by A. N. Sharkovsky and his group, cf,, e.g., [F],
[FSS], [K], [KS], [SKSF1], [Sh5], [SMR], [SKSF2], [Sh3]. Unfortunately, it is not
true. We disprove the original equivalences

(P2) & (P3) & (P) & (Py)

and show that )
(P2) Z (Ps) ;2 (P1) ;E (Pa)

Note, that other authors supplied counterexamples to different conjectures and
theorems of Sharkovsky, e.g., [ChX] or [ACS].

The pricipal part of the Thesis consist of three papers. Paper [Sil] proves that
(Py) implies (P;) and exhibits a map satisfying (P, ), but not (P,). The next paper
[Si2] proves that (P;) implies (P, ) and exhibits a map satisfying (P, ), but not ( P,).
This map, however, has the property (P;) (in other words, that (P3) # (P)). In
paper [Si3], we further show that there is a continuous map f satisfying (P,), but
neither (P;) nor (P;). We also show that (P;) implies (P, ). We can still ask about
relations between ( Py) and (%) and between (Py) and (P3). There is also an open
problem if (P,) implies (Ps). Our conjecture here is that yes. Summarizing the
papers [Si2] and [Si3] including the conjectured implication, we get the following
ordering: (P;) is stronger than (P3), and (Ps) is stronger than ().



2 Terminology and preliminaries

In the sequel, N denotes the set of all positive integers, I = [0, 1] is the the unit
compact interval, and I"™ is the n-dimensional cube. For a compact metric space
X, C(X, X) denotes the space of continuous maps of X into itself. Let A be the
closure of a set A and || - || the uniform norm.

We define the nth iterate f™ of a map f by f o f™~!. If for some n ¢ N,
Jf™(x) = x then the point z is called a periodic point with period n. If f(z) = =
then z is a fixed point of f. By the period of a periodic point we will mean its
smallest period. The set of periodic points of f is denoted by Per( f) and the set of
fixed points by Fix(f). A periodic point p is repelling if the one-sided derivatives
of f™ at p have absolute values greater than 1 for each n € N.

The orbit (resp. trajectory) of a set A, written Orbs(A) (resp. Traj 7(A)), is
the smallest set containing A that is closed under both images and preimages with
respect to f (resp. the smallest set containing A closed under f).

The w-limit set of the trajectory of « € I is the set of accumulation points of
this trajectory and is denoted by wy(x), and w(f) = | J{ws(x); = € I} is the set
of w-limit points of f.

If the periods of points in Per( f) are the numbers 1,2, ..., 2" then f is of type
2", and if the periods are all powers of 2 then f is called of fype 2.

Amap f ¢ C(I,1) is unimodal if there exists ¢ € (0, 1) such that f is strictly
increasing on [0, ¢] and strictly decreasing on [c, 1]. A map f is weakly unimodal
if there exists ¢ € (0, 1) such that [ is non-decreasing on [0, c] and non-increasing
on [, 1].

Amap f € C(I,I)is Lyapunov stable on a set A C I if for any € > 0 there
exists § > 0 such that if |z — y| < ¢ for z and y in A then |f*(z) — f*(y)| < & for
any .

Let f € C(I,I). Then E C [ is an (n,)-separated set if, for every two
different points z, y from £, there isa 7, 0 < j < n, with |f/(z) — f/(y)| >
e > 0. If M is a compact subset of I denote by s,,(s, M, f) the maximum pos-
sible number of points in an (n, c)-separated subsets of M. Put 3(s, M, f) =
lim sup,,_, ., % log s, (e, M, f). The topological entropy of the map f with respect
to the compact subset M and the topological entropy of the map f are defined
by h(f, M) = lim._, 93(g, M, f) and h(f) = h(f,I), respectively. Topological
entropy is an important topological invariant and it is a measure of the dynamical
complexity of the map.

A map F € C(I*,I%) such that F(z,y,2) = (f(z), ¢(z,v), h(z,y,2)) is a
triangular map, f is the base of F', and the set I, := {z} x I? is the layer over z.



Sharkovsky Theorem ([BC] and [SKSF2]). Let f € C(I,I). In the set of positive
integers, define an ordering as follows

1<2=2 228 <...4922.7<22.5222.8<.--<2.7<2-5<2-3=
=0 <7 <5=<3.

If [ has a cycle of order m and n < m, then f has a cycle of order n as well.
Moreover, for any m there exists a map with cycle of period m and no cycles of
periods n if m < n.

Thus, by the Sharkovsky’s theorem there are functions f in C(I, I) such that
the set of periods of points in Per(f) is the set {27}> . i.e. f is of type 2°°.

The following theorem gives a characterization of continuous maps of the unit
interval I with zero topological entropy: A map f in the class C(I, I) has zero
topological entropy if and only if it is of type < 2°°,

Misiurewicz Theorem ([M1], cf. also [BC]). Let f € C(I,1I). Then f has posi-
tive topological entropy if and only if f has a periodic point whose period is not a
power of 2.

3 Lyapunov stability

In Section 5 of the thesis, we find a class of weakly unimodal C'> maps of an in-
terval with zero topological entropy such that no such map f is Lyapunov stable on
the set Per(f) of its periodic points. This disproves a statement published in sev-
eral books and papers, e.g., by V.V. Fedorenko, S. F. Kolyada, A. N. Sharkovsky,
A. G. Sivak and J. Smital.

Theorem A. No f € F is Lyapunov stable on Per(f). On the other hand, F con-
sists of mappings with zero topological entropy and contains a C™ map.

Theorem B. Let f € C(I,1I). If f is Lyapunov stable on Pex(f) then f has zero
topological entropy.

Remark. A different counterexample to the problem is also given in [Si0]. A
map f of the unit interval with zero topological entropy and such that f is not
Lyapunov stable on the set of its periodic points is obtained from the Feigenbaum
map. The method of blowing up orbits introduced by A. Denjoy [D] is used in the
construction.



4 Periodic points not a G5 set

In Section 6 of the thesis we exhibit an example of a continuous map of the interval
of type 2°° and hence, by a theorem of Misiurewicz, of zero topological entropy,
for which the set of periodic points is not a G5 set. This disproves a conjecture by
Sharkovsky from 1965. Unfortunately, this conjecture has been incorrectly quoted
as a true statement by other authors in many papers and books. The desired map is
a limit of a sequence of maps starting with the well-known Feigenbaum map.

Theorem C. There is a map [ € C(I,I) with zero topological entropy and such
that Per( f) is not a Gy set.

5 Recurrent points not a closed and not an F, set

We construct in the thesis in Section 7 a continuous map y of the unit interval into
itself of type 2°° which has a trajectory disjoint from the set Rec(x) of recurrent
points of x, but contained in the closure of Rec(x). In particular, Rec(y) is not
closed. A function + of type 2°°, with non-closed set of recurrent points, was
found by [ChX]. However, there is not a trajectory in their construction contained
in Rec(1)) \ Rec(v), since any point in Rec(t)) is eventually mapped into Rec(x)).
Moreover, our construction is simpler.

The map x is constructed as the uniform limit of a sequence of maps starting
with the continuous map on the picture bellow and by the method of blowing up
orbits by A. Denjoy [D].




Theorem D. There is a map x € C(I,1) of type 2°° such that

(1) x has a unique infinite maximal w-limit set & = RU P, where R is a Cantor
set, and P = {v,}22 __ an infinite set of points isolated in & such that
x(vn) = vy, for any n;

(i) P C Per(x) \ Per(x);
(iii) the set Rec(x) is not closed;

(iv) any point in Per(x) is isolated in w(x), and repelling;
(v} x is monotone in a neighborhood of any p € P.

We use x to show that there is a continuous map of the interval of type 2°°
for which the set of recurrent points is not an F,, set. This example disproves a
conjecture of A, N. Sharkovsky et al., from 1989.

Theorem E. There is a map [ € C(I,I) with zero topological entropy such that
Rec(f) is not an F, set.

Theorem F. Let f € C(I,1). If Rec(f) is an F, set then f has zero topological
entropy or, equivalently, is of type < 2°°,

We provide also another application of y for triangular maps of the unit square
2,

6 On a problem concerning w-limit sets of triangular maps
in /°

In the last Section 8 of the thesis we shortly show that there is a continuous tri-
angular map of the unit cube I* into itself with the set of w-limit points w(F) =
{0} x I = wp(z,vy, 2) for any (x,y, z) € I® such that z # 0. This map is of the
form F'(z,y,z2) = (f(z), g(x,y), h(z, z)), where the maps g(z,.) and h(z,.) are
non-decreasing. This solves a problem by F. Balibrea, L. Reich, and J. Smital. The
same problem was solved independently by [BGC].

Theorem G. There is a triangular map F € C(I® I3) with w(F) = {0} x I? =
wp(x,y, z), for any (z,y,2) € I3 such that x # 0. This map has a special form
F(I) i, Z) = (f(w);gx(y), h’-L(z))‘
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