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Slezská univerzita v Opavě
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1. Introduction

This thesis is based on two independent papers [22] and [12], the common subject of

which are harmonic and holomorphic Bergman spaces with reproducing kernels (the so called

Bergman kernels) and the asymptotic behaviour of the associated Berezin transform of one

or two arguments. Both these papers constitute an integral part of the thesis.

The theory of reproducing kernels, of which the theory of Bergman spaces is a part, has

its roots already at the beginning of the twentieth century in the work of J. Mercer, E.

H. Moore and S. Zaremba, see [3] for a nice overview of the state-of-the-art towards 1950.

It was however S. Bergman who introduced what he called “kernel functions” in his thesis

[10] in 1922 for the first time as kernels corresponding to classes of harmonic and analytic

functions in one or several variables with the reproducing property (Bergman kernels). A

great deal of important results were achieved using these kernels ranging from the theory

of functions of one and several complex variables to classification of biholomorphic strongly

pseudoconvex domains to the theory of invariant metrics (the Bergman metric) to partial

differential equations, see for example [9], [26], [18].

From the functional analytic and operator theoretic point of view, the Bergman spaces,

whose precise definition is given in Section 2, can be viewed as a natural outgrowth of the

theory of Hardy spaces Hp, 0 < p < ∞, which in case p = 2 is closely connected with the

analogous theory of Szegö kernels, see [6] for a nice unified treatment of Bergman and Szegö

kernels via the so called Kerzman-Stein formula, and [14], [34] for general information on

functional analytic aspects of the theory of Bergman spaces.

Yet another area, where the theory of Bergman spaces finds its extensive use is the part

of mathematical physics dealing with the so called quantization procedures. Here the ex-

plicit knowledge of the relevant reproducing kernels and their asymptotic behaviour together

with some related concepts derived from them (the Berezin symbols, the Toeplitz operators

and the Berezin transform) play significant role1, which we try to illustrate in Section 4,

where the basic idea of the so called Berezin quantization due to F. A. Berezin [8] is briefly

described. For an allied idea of Berezin-Toeplitz quantization as well as some other quanti-

zation procedures we refer to the survey paper [1] and references therein. A short review of

basic concepts from classical and quantum mechanics that serves as a way to introduce the

readers into a broader context in which quantization takes place is given in Section 3. We

emphasize the fact that this rather motivational section, heavily biased to physics, does not

exactly fit the expertise area of the author and is only indirectly related to the main theme

of the thesis.

It is quite an interesting fact that some of the results pertaining to quantization schemes

on domains in Cn using the holomorphic Bergman spaces which, after making necessary

1At least within the class of analytic functions on certain domains in Cn.
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technical adjustments, work also on general Kähler manifolds, in fact remain in force also

for more general harmonic function spaces on certain open subsets of Rn (the harmonic

Bergman spaces) even if their applicability to quantization seems to be virtually irrelevant.

In Section 5 we provide two theorems of this sort that are due to Englǐs [16] and Blaschke

[11].

Finally, the two aforementioned papers [22] and [12] are given some attention in Sections

6 and 7, respectively.

The first paper [22] entitled “On asymptotic expansion of the harmonic Berezin transform

on the half-space” was published in Journal of Mathematical Analysis and Applications in

2013 and its main result is a theorem on asymptotic expansion of the harmonic Berezin trans-

form, analogous to the expansions cited in Section 5, this time for the harmonic Bergman

space on the half-space in Rn.

The second paper [12] with the title “Berezin transform of two arguments”, published in

Journal of Functional Analysis in 2015 aims at a deeper conceptual insight into the structure

of the Berezin transform by extending it to an integral transform of two arguments and

showing that, in some special cases, similar expansions to the expansions mentioned above

do also hold true even in this setting.

We would like to remark that, with the exception of the ideas presented in the papers [22]

and [12], all results in this abstract have probably already appeared elsewhere and in this

sense we make no claims to originality.

2. Holomorphic and harmonic Bergman spaces

In this section, we briefly review some basic facts related to certain reproducing kernel

Hilbert spaces, namely the so called holomorphic and harmonic Bergman spaces that play a

key role in subsequent considerations. The main purpose is to fix notation for later reference.

A basic source of the material covered here are the books [25] and [4].

2.1. The holomorphic case. Let Ω ⊂ Cn be a domain in Cn, i.e. a connected open subset

in Cn. Denote by O(Ω) the space of functions that are holomorphic on Ω and consider the

Lebesgue volume measure λ on Cn and the corresponding space L2(Ω, λ) of square-integrable

functions with respect to λ. We define the holomorphic Bergman space on Ω to be the

set

A2(Ω) = {f ∈ O(Ω) :

∫
Ω

|f(z)|2 dλ(z) <∞} = O(Ω) ∩ L2(Ω, λ). (1)

Using the mean-value property for holomorphic functions it is easily shown that for every

compact set K ⊂ Ω there is a constant C = C(K,n) > 0 such that for every f ∈ A2(Ω)

sup
z∈K
|f(z)| ≤ C‖f‖A2(Ω). (2)
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Two important consequences of this last result are the following: first of all, the estimate (2)

implies that the convergence in norm implies the uniform convergence on compact subsets

of Ω, which eventually implies that the limit of an arbitrary Cauchy sequence of functions

in A2(Ω) (the limit exists since L2 is complete) is in fact a holomorphic function. This is

tantamount to the fact that A2(Ω) is a Hilbert space with respect to the inner product

(f, g) =

∫
Ω

f(z)g(z) dλ(z). (3)

Second, taking the set K to be a one-point set {z}, where z is a fixed point in Ω, and the

mapping ez (the so called evaluation functional) whose action on functions is defined by

A2(Ω) 3 f 7→ f(z) ∈ C,

we can see that, due to (2), ez is a bounded linear functional on the Hilbert space A2(Ω).

Therefore, invoking Riesz representation theorem, there is a function Kz ∈ A2(Ω) such that

for every f ∈ A2(Ω) and for every z ∈ Ω

ez(f) = f(z) = (f,Kz)

=

∫
Ω

f(x)Kz(x) dλ(x).

Denoting K(x, z) := Kz(x) we can treat the complex function K as a mapping from Ω× Ω

and we have

K(x, z) = Kz(x)

= (Kz, Kx) (due to the reproducing property of K)

= (Kx, Kz) (since the product (3) is sesquilinear)

= Kx(z) (the reproducing property once again)

= K(z, x).

This also means that not only the reproducing kernel K(·, ·) is holomorphic in the first

variable (as K(·, z) belongs to A2(Ω) for every z ∈ Ω) but it is antiholomorphic in the

second variable.

Next we recall a result that may be sometimes useful in practical computations:

Theorem 1 (see [25]). Let {ϕj} be a any complete orthonormal system for A2(Ω). Then the

series
∞∑
j=0

ϕj(x)ϕj(z)

sums to the Bergman kernel K(x, z), uniformly on C × C for every compact set C ⊂ Ω.

Although to compute the Bergman kernel in an explicit form for a given domain Ω is

usually quite a formidable task, in certain special instances it is nevertheless feasible. An

example, known essentialy already to Poincaré, of a domain for which this is indeed possible

and the mother of them all, is the following (see [24]):
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Example 1. Set Ω = D, the unit disc in C. We first note that for every j 6= k

(zj, zk) =

∫
D
zjzk dxdy =

∫ 1

0

∫ 2π

0

rj+keiθ(j−k)r dθ dr = 0.

Since (∫
D
|zj|2 dxdy

) 1
2

=

(∫ 2π

0

∫ 1

0

r2j+1 dr dθ

) 1
2

=

√
π√

j + 1
,

it is seen that the system
{√

j+1√
π
zj
}

is orthonormal. Moreover, if we write f as a Taylor

series, f(reiθ) =
∑∞

k=0 akr
keikθ, we have for 0 < R < 1 by uniform convergence∫

D(0,R)

√
j + 1√
π

zjf dxdy

=

∫ R

0

(∫ 2π

0

rjeijθ
√
j + 1√
π

∞∑
k=0

akr
ke−ikθr dθ

)
dr

= 2π

(
aj
√
j + 1√
π

∫ R

0

r2j+1 dr

)
.

Clearly,

lim
R→1−

∫
D(0,R)

√
j + 1√
π

zjf dxdy =

(√
j + 1√
π

zj, f

)
,

so that the assumption
(√

j+1√
π
zj, f

)
= 0 for every j implies that aj = 0 for every j, hence

f ≡ 0. Thus the system
{√

j+1√
π
zj
}

is also complete. It follows from Theorem 1 that

K(x, z) =
∞∑
j=0

√
j + 1√
π

xj
√
j + 1√
π

zj =
1

π

∞∑
j=0

(j + 1)(xz)j.

The last sum is just a differentiated geometric series so that finally

K(x, z) =
1

π

1

(1− xz)2
,

which is what we wanted to show. �

Remark 1. The method that we have used to compute the Bergman kernel on D in Example

1 is not the only one existing. For an alternative approach using Green’s functions see [6].

For reasons that will become shortly apparent, it is also important to study the so-called

weighted analogues of the classical Bergman spaces. Suppose ρ is a positive Lebesgue mea-

surable real-valued function on Ω. Then we call ρ a weight function on Ω and the space

L2(Ω, ρ) is the so called ρ−weighted L2 space, which means that f ∈ L2(Ω, ρ) if and only

if ∫
Ω

|f(z)|2ρ(z) dλ(z) <∞.
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Modifying the standard L2− case in a self-evident manner, it is seen that L2(Ω, ρ) is a Hilbert

space with the inner product

(f, g) =

∫
Ω

f(z)g(z)ρ(z) dλ(z).

Moreover, everything that was done above in the unweighted case goes through unchanged

under some relatively mild additional conditions on ρ. Namely: if ρ is such a weight function,

for which 1/ρ is locally integrable2 on Ω, then it can be shown that the corresponding

ρ−weighted variant of the holomorphic Bergman space (1), defined by

A2(Ω, ρ) = {f ∈ O(Ω) :

∫
Ω

|f(z)|2ρ(z) dλ(z) <∞} = O(Ω) ∩ L2(Ω, ρ), (4)

is in fact a closed linear subspace of L2(Ω, ρ), hence a Hilbert (sub)space (of L2(Ω, ρλ)) in its

own right, sometimes possibly trivial (depending on a particular choice of ρ), for which the

evaluation functional ez is continuous for every fixed z just as in the unweighted case. The

corresponding reproducing kernel is called the weighted Bergman kernel and is usually

denoted by Kρ.

Important special instances of the weighted Bergman spaces and their respective Bergman

kernels are the following:

Example 2. Ω = D, ρ(z) = α+1
π

(1− |z|2)α. It can be shown (see for example [34]) that the

factor α+1
π

in ρ(z) is chosen in such a way that

α + 1

π

∫
Ω

(1− |z|2)α dλ(z) = 1

for every α > −1. Similarly to Example 1 it can be shown that the corresponding weighted

kernel Kρ is given by the formula

Kρ(x, y) =
1

(1− xy)α+2
,

which, up to the factor 1/π, reduces to K(x, y) from Example 1 if α = 0 (the unweighted

case). �

Example 3. Ω = the unit ball in Cn, ρ(z) = cα(1 − ‖z‖2)α, where again the coefficient cα

(which depends on α) is chosen in such a way to make ρ(z) of total mass one, to be precise

cα =
Γ(α + n+ 1)

Γ(α + 1)πn
.

The corresponding weighted Bergman kernel is

Kρ =
1

(1− 〈x, y〉)α+n+1
,

where 〈·, ·〉 denotes the standard hermitian inner product in Cn, see [30]. �

2This is usually unnecessarily general condition on ρ; in virtually every place in this thesis, positivity and

continuity of the function ρ will do.
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In what follows, we shall frequently take α = 1/h, where h plays the role of Planck’s

constant (see Sections 3.5 and 3.6) if not explicitly stated otherwise. If we want to stress the

dependence of the weights ρ on the parameter α or h, we shall write ρα or ρh, respectively

(and similarly for the corresponding function spaces).

Example 4. The space A2(Ω, ρ) (sometimes denoted also by Fh), where Ω = Cn (i.e. the

functions in Fh are entire on Cn) and with the weight function ρ(z) = e−α|z|
2
(α/π)n. This

is the so called Segal-Bargmann or Fock space. The reproducing kernel is given by the

formula

Kρ(x, y) = e〈x,y〉/h = eα〈x,y〉,

see [35]. �

2.2. The harmonic case. Consider again the space L2(Ω, λ) of functions that are square-

integrable on a nonempty open subset Ω ⊂ Rn with respect to the usual Lebesgue measure λ

on Ω. In a fashion completely parallel to (1) and (4), we can define the so called harmonic

Bergman space B2(Ω) to be the set

B2(Ω) = {f ∈ A(Ω) :

∫
Ω

|f(z)|2 dλ(z) <∞} = A(Ω) ∩ L2(Ω, λ),

where A(Ω) is the space of all harmonic functions on Ω. Since, as already tacitly pointed out

in subsection 2.1, the weighted Bergman spaces have essentially nothing special, and we can

thus subsume both the ρ−weighted and unweighted Bergman spaces under one heading by

considering the (harmonic or holomorphic) Bergman spaces as subspaces of L2(Ω, µ) with

respect to an appropriate measure µ on Ω such that ρ = dµ
dλ
, where ρ is a positive continuous3

function and dµ
dλ

is the Radon-Nikodym derivative (i.e. the measure µ has a positive continu-

ous density with respect to the Lebesgue measure). Under these conditions it can be shown

that, using the mean value property for harmonic (or holomorphic) functions, the evaluation

functional ex is continuous for every fixed x ∈ Ω, similarly to the holomorphic case. The

corresponding reproducing kernel Hx(·) ∈ B2(Ω, ρ) (we shall write B2(Ω, ρ) whenever we

want to stress the dependence of the space B2(Ω) on the weight ρ) which is obviously a

harmonic function for every x ∈ Ω, is called the (weighted) harmonic Bergman kernel

with the reproducing property:

f(x) = (f,Hx) =

∫
Ω

f(y)Hx(y) dµ(y).

Denoting H(x, y) := Hy(x), the harmonic Bergman kernel can be viewed as a function on

Ω× Ω and due to the reproducing property we have

H(x, y) = Hy(x) = (Hy, Hx) = (Hx, Hy) = Hx(y) = H(y, x) (5)

3These conditions are again not of the utmost generality, but they are sufficient for our purposes.
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and, for every f ∈ B2(Ω, ρ), we thus obtain, using the fact that if f is a harmonic function,

then f is a harmonic function, that

(f,Hy) = f(y) = (f,Hy) =

∫
Ω

f(z)Hy(z) dµ(z)

=

∫
Ω

f(z)Hy(z) dµ(z) = (f,Hy),

showing that Hy = Hy, which implies that, unlike in the holomorphic case, the function

H(x, y) is in fact a real-valued function and that (using (5)) H(x, y) = H(y, x).

Remark 2. Both the definitions of the holomorphic and harmonic Bergman spaces can be

extended to the realm of Lp spaces for 1 ≤ p <∞ and their weighted variants. However, we

shall make no use of this stuff in the sequel, see [34].

A handful of examples of (weighted) harmonic Bergman spaces and associated Bergman

kernels is known. They are essentially the following:

Example 5. For Ω = Hn = {x ∈ Rn : xn > 0}, the open upper half-space in Rn with the

unweighted Lebesgue measure, the reproducing kernel for the space B2(Ω) si given by

K(x, y) =
2Γ(n

2
)

π
n
2

(n− 1)(xn + yn)2 + (xn − yn)2 − |x− y|2

((xn + yn)2 − (xn − yn)2 + |x− y|2)
n
2

+1
,

see e.g. [4]. �

Example 6 (see [16]). The space Fh from Example 4 has the following space Hh as its

harmonic counterpart: we take Ω = Rn and the weight function ρ(x) is much the same as

in Example 4:

ρ(x) =

(
1

πh

)n
2

e−
‖x‖2
h .

The harmonic Bergman kernel for B2(Ω, ρ) = Hh can be computed explicitly to be given for

n ≥ 3 by the formula

Hρ(x, y) = Φ2

(
−

n
2
− 1

;
n
2
− 1 n

2
− 1

−
;
t1 + it2
h

,
t1 − it2
h

)
, (6)

where

t1 = 〈x, y〉, t2 =
√
|x|2|y|2 − 〈x, y〉2

and Φ2 is one of the hypergeometric functions of two variables from Horn’s list, defined as

Φ2

(
−
c

;
a b

−
; z, w

)
=

∞∑
j,k=0

(a)j(b)k
(c)j+kj!k!

zjwj, (7)

where (a)k := a(a + 1)(a + 2) . . . (a + k − 1) = Γ(a+k)
Γ(a)

is the so called Pochhammer symbol

defined whenever a and a + k are not negative inetgers (we remark that the series for Φ2

converges for every z, w ∈ C and thus defines an entire function on C2, see [5] or [31].) For

7



n = 2, the harmonic Bergman kernel is twice the real part of the usual holomorphic Bergman

kernel on C minus one, for n = 1

Hρ(x, y) = 1 +
2xy

h
, x, y ∈ R.

The details of the proof of the formula (6) as well as the discussion of the remaining cases

are to be found in [16]. �

Example 7. For Ω = Bn, the unit ball in Rn with the weight function ρ(x) = cα(1− |y|2)α,

where the coefficient cα is given by

cα =
Γ
(
α + n

2
+ 1
)

πn/2Γ(α + 1)
,

it has been computed in many places that for α > −1 the reproducing kernel Kρ for the

space B2(Ω, ρ) is

Kρ(x, y) = F1

(
α + n

2
+ 1

n
2
− 1

;
n
2
− 1 n

2
− 1

−
; z, z

)
, (8)

where

F1

(
a

c
;
b1 b2

−
;x, y

)
=

∞∑
j,k=0

(a)j+k(b1)j(b2)k
(c)j+kj!k!

xjyk (9)

is one of the hypergeometric functions of Appell and z = x · y + i
√
|x|2|y|2 − (x · y)2 (here

the series on the right of (9) converges for every x, y ∈ C with max {|x|, |y|} < 1, see [31].)

For the details on (8) see [11]. �

3. Classical versus quantum mechanics

In this section we give a short account of basic principles of classical and quantum mechan-

ics in their Hamiltonian/Heisenberg formulation, which later serves as a motivation behind

some of the quantization schemes introduced in later (sub)sections. For the sake of brevity,

the whole discussion is essentially limited to the case of a particle moving in Rn, i.e. the cor-

responding phase space M is just R2n if not stated otherwise. The treatment closely follows

[19] and [33]. Would like once more to stress the motivational character of this section and

to point out that its relevance to the main theme of the thesis is only indirect.

3.1. Classical mechanics. Consider the problem of a particle moving in Rn under the

action of a force F. Suppose the position x = x(x1, . . . , xn) of the particle is a function of its

canonical coordinates in Rn (which may of course depend on time t). It is well-known that

for a conservative force field F, i.e. such that there exists a function V (x) for which

F = −gradV ≡ −∂V
∂x

,

Newton’s second law reads

m
dv

dt
= −gradV,

dx

dt
= v,

8



or, using the change of variables p = mv,

dp

dt
= −∂V

∂x
,

dx

dt
=

p

m
. (10)

If we note that for the function H(x,p) = p2

2m
+ V (x), there are the relations

p

m
=
∂H

∂p
,

∂V

∂x
=
∂H

∂x
,

then the system (10) can be obviously recast in the form

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
. (11)

Thus conservative mechanical systems are a special incarnation of the so called Hamiltonian

systems which in fact comprise much broader classes of ordinary differential equations of

the form

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (12)

where H(q,p) = H(q1, . . . , qn, p1, . . . , pn) is the so called Hamiltonian function, qi and pi

are the so called generalized coordinates and generalized momenta, respectively, and

n stands for the number of degrees of freedom.

3.2. The structure of the algebra of observables. One of the deepest facts connect-

ing classical physics with mathematics is a kind of duality between points of a manifold

M and functions on that manifold, which says that points x ∈ M can be identified with

R−homomorphisms F → R, where F is an appropriate R−algebra of smooth functions on

the manifold. If we interpret the manifold M as a model of a given physical system and F

as a collection of measuring devices and the points of M as the states of the system, then

it should not be surprising that any classical physical system is described by an appropriate

algebra of smooth functions on the phase space M, each state x ∈ M of the system being

the homomorphism x : F → R that the state x determines on F , see [27] for a deeper

discussion of this issue. In case M = R2n, denote by F the commutative algebra of smooth

real-valued functions on M (we recall M is the so called phase space alluded to above,

whose coordinates are denoted by q1, . . . , qn, p1, . . . , pn) and call the functions f ∈ F the

(classical) observables. In this sense, the Hamiltonian functions are observables and the

Cauchy problem for a Hamiltonian system (12):

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n

with initial conditions qi
∣∣
t=0

= qi0, pi
∣∣
t=0

= pi0, i = 1, . . . , n and the Hamiltonian function

H = H(q1, . . . , qn, p1, . . . , pn), has a unique local solution of the form

qi = qi(q
i
0, p

i
0, t), pi = pi(q

i
0, p

i
0, t)

9



(here and in what follows we assume that the solutions are actually defined on the whole of

R).

The solutions to the Hamiltonian system described above define a one-parameter group

of transformations Gt of R2n into itself:

Gt : R2n → R2n,

where Gt(q,p) is the solution of the Hamiltonian system corresponding to the initial condi-

tion Gt(q,p)
∣∣
t=0

= (q,p) and it follows that

Gt+s = GtGs = GsGt and G−1
t = G−t.

On the level of the algebra of observables F , the transformations Gt have the effect that

they generate a system of transformations Ut : F → F of the algebra of observables given

by

Utf(q,p) := f(Gt(q,p)) ≡ ft(q,p).

We remark that the values of the function ft are completely determined by the initial con-

ditions q0,p0. This fact is reflected in the coordinate description of ft(q,p) in the form

ft(q0,p0) = f(q(q0,p0, t),p(q0,p0, t)). (13)

It is now a standard fact that the function ft(q,p) satisfies the differential equation

∂ft
∂t

=
n∑
i=1

(
∂ft
∂qi

∂H

∂pi
− ∂ft
∂pi

∂H

∂qi

)
,

with the initial condition ft(q,p)
∣∣
t=0

= f(q,p) or, in much compact form using (13),

dft
dt

= {H, ft}, (14)

where we have defined

{f, g} :=
n∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
,

the so called (canonical) Poisson bracket, for arbitrary observables f, g. The following

algebraic properties of the Poisson bracket can be established in a straightforward manner:

(1) {f, g} = −{g, f}; (antisymmetry)

(2) {f, g + ch} = {f, g}+ c{f, h}; (linearity)

(3) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0; (Jacobi identity)

(4) {f, gh} = g{f, h}+ {f, g}h. (product rule)

In particular, according to the product rule, the Poisson bracket is a derivation on the

algebra F in the sense that

Xf (gh) = (Xfg)h+ g(Xfh),

10



where Xf is a vector field on R2n defined by

Xf =
n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
.

To sum up, the algebra F is a commutative Lie algebra with the bracket {·, ·}.

Remark 3. For a generalization to symplectic manifolds and Poisson manifolds, see [33].

3.3. States and measurements. The concept of a state is directly related to the conditions

under which experiments are conducted. Experiments generally consist of measurements of

numerical values of observables for a given system under certain definite conditions (the

conditions of the experiment) and it is assumed that, at least theoretically, these conditions

can be reproduced over and over again with every single measurement. However, we do

not assume that different measurements give one and the same value of a given observable

every time they are repeated. Rather we suppose that to give a state of the system means

to prescribe the conditions of an experiment in such a way that conducting many repeated

trials gives probability distributions for all the observables.

In more mathematical terms, a state µ on the algebra of classical observables F is the

assignment

F 3 f 7→ µf ∈ P(R),

where P(R) is the set of probability measures on R and a measurement of an observable f

in a state µ is the assignment

F ×S 3 (f, µ) 7→ µf ∈ P(R),

where S is the set of all states. Hence for every Borel set E ⊂ R the quantity 0 ≤ µf (E) ≤ 1

is the probability that the values of the observable f in the state µ belong to E.

Taking E to be the interval (−∞, λ] and setting µf = µf ((−∞, λ]) ≡ µf (λ) we obtain

the distribution function of the observable f in the state µ. We remark that the quantity

µf (λ) is the probability of getting a value not exceeding λ when measuring f in the state µ.

The expectation (or the mean value) of an observable f in a state µ is then defined by

the formula

〈f |µ〉 =

∫ ∞
−∞

λdµf (λ).

Under some requirements on the mean values of observables (see [19]), it can be shown

that the mean value is a positive linear functional on the algebra of classical observables F ,

which, according to a general version of the Riesz representation theorem (see [28]), takes

the form

〈f |µ〉 =

∫
M

f(p,q)ρµ(p,q) dp dq,

where the integral is taken over the phase space M. This is the usual equivalent description of

a state of a system by means of the distribution function ρµ(p,q) used in statistical physics.

11



Here ρµ is in general a positive generalized function. If the distribution function ρµ takes

the form

ρµ(p,q) = δ(p− p0)δ(q− q0),

then we call the state µ a pure state. Thus the corresponding measure on the phase space

is concentrated at the point (p0,q0) and a pure state is defined by prescribing this point of

the phase space and the mean value of an observable f in a pure state µ is

〈f |µ〉 = f(p0,q0).

All other states that are not pure are called mixed states.

An important feature about mixed states is that they increase the variance of the corre-

sponding probability distributions. Recall that the variance of a probability distribution

is the quantity

σ2
µ(f) = 〈(f − 〈f |µ〉)2|µ〉 = 〈f 2|µ〉 − 〈f |µ〉2.

It follows that for the simplest example of a mixed state µ, which is a convex combination

of two pure states µ1 and µ2 concentrated at the points (p1,q1) and (p2,q2), given by the

distribution

ρµ(p,q) = αδ(p− p1)δ(q− q1) + (1− α)δ(p− p2)δ(q− q2), α ∈ (0, 1),

we have

σ2
µ ≥ ασ2

µ1
f + (1− α)σ2

µ2
f

and

σµfσµg ≥ ασµ1fσµ1g + (1− α)σµ2fσµ2g

with equality whenever the mean values of the observables in the states µ1 and µ2 coincide.

For a pure state µ,

σ2
µf = f 2(p0,q0)− f 2(p0,q0) = 0.

This means that for a classical system in a pure state, the result of a measurement of any

observable is uniquely determined and that a state of a classical system is pure if at the

time of a measurement the conditions of the experiment fix the values of all generalized

coordinates and momenta.

3.4. Time evolution of classical systems. We close the treatment of classical mechanics

with what is traditionally described as the Hamiltonian picture of classical mechanics. In

this picture, the time evolution of a classical mechanical system is described by the system

of equations of the form

dft
dt

= {H, ft},
dρ

dt
= 0,

12



which means that the states do not depend on time and the time dependence of the mean

values of observables f in a state µ is given by the formula

〈ft|µ〉 =

∫
M

ft(p,q)ρ(p,q) dp dq =

∫
M

f(Gt(p,q))ρ(p,q) dp dq

or, in a more explicit form,

〈ft|µ〉 =

∫
M

f(q(q0,p0, t),p(q0,p0, t))ρ(q0,p0) dq0 dp0,

where q(q0,p0, t) and p(q0,p0, t) are the solutions of the Hamiltonian equations (12) with

initial conditions q(q0,p0, t)
∣∣
t=0

= q0, p(q0,p0, t)
∣∣
t=0

= p0. If the system is in a pure state,

then ρ(q,p) = δ(q− q0)δ(p− p0) and we have

〈ft|µ〉 = f(q(q0,p0, t),p(q0,p0, t)),

in accordance with the description made in (13).

Remark 4. There is an alternative but equivalent description to the Hamiltonian picture,

called the Liouville description (or the Liouville picture) which we shall not need here,

see [33].

Remark 5. For a generalization of the above results to symplectic or Poisson manifolds, see

for example [2] or [33].

3.5. Quantum mechanics. While in classical mechanics there is always a possibility, at

least theoretically, to arrange the experiment in such a way that the system is in a pure state

and the corresponding variance is zero, in quantum mechanics this is no longer true. Here,

even pure states lead in general to nonzero variance, which is reflected in the celebrated

Heisenberg uncertainty principle and there is no chance (not even theoretically) to set up

the experiment in such a way that the results of every measurement would be determined

uniquely by the conditions of the experiment. This means that the realm of quantum me-

chanics is fundamentally different from the classical mechanics and to obtain the correct4

mathematical framework, in which it would be possible to formulate the laws of quantum

mechanic, it turns out necessarry to reject the realization of the observables as commutative

algebra of functions on the phase space. Instead, one is forced to assume that to every

quantum system corresponds an infinite-dimensional complex Hilbert space H , called the

space of (pure) states and that the system of observables A of a quantum system cor-

responding to the Hilbert space H is the set of all self-adjoint operators in H . Finally,

one has to assume that the set S of states of a quantum system with a Hilbert space

H consists of all positive trace class operators M with TrM = 1. (We recall that a linear

4This framework, although widely accepted both by most mathematicians and physicists these days, is

nevertheless doubted by some, at least in the context of its possible generalizations to quantum field theory,

see for example the discussion in [27] or [13].
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operator A in a separable complex Hilbert space (H , (·, ·)) with a domain D(A) ⊂ H is

positive if (Aϕ,ϕ) ≥ 0 for every ϕ ∈ D(A); a positive linear operator A is of trace class

(or, synonymously, belongs to the first Schatten class) if and only if for every complete

orthonormal system {en}∞n=1 of the space H

∞∑
j=1

(Aej, ej) <∞;

and last but not least, the trace of a trace class operator A is defined, independently of the

choice of the orthonormal basis, by the formula

TrA =
∞∑
j=1

(Aej, ej)

and we shall denote the set of all trace class operators, which is in fact a two-sided ideal in

the C∗−algebra L (H ) of bounded linear operators in H , by the symbol S1.) The pure

states of a quantum system are projection operators onto one-dimensional subspaces of H .

In particular, for the unit vectors in H , ψ ∈ H , ‖ψ‖ = 1, the corresponding projection

operator onto the subspace Cψ is denoted by Pψ. All other states different from the pure

states are called mixed states.

We also define a measurement in a quantum system to be the assignment

A ×S 3 (A,M) 7→ µA ∈ P(R), (15)

where, similarly to the classical case, P(R) is the set of probability measures on R, where

for every Borel set E ⊂ R, the quantity 0 ≤ µA(E) ≤ 1 is the probability that for a given

quantum system in the state M, the result of a measurement of the observable A belongs to

E. We also define the expectation value (or the mean value) of the observable A ∈ A in the

state M ∈ S as

〈A|M〉 =

∫ ∞
−∞

λdµA(λ),

where of course µA(λ) = µA((−∞, λ]) is a distribution function for the probability measure

µA.

Explicit realization of the process of measurement (15) in a quantum system is done by

means of the general spectral theorem of von Neumann, which we shortly announce. To

that end, we first recall the notion of a projection-valued Borel measure on R. This is

a mapping Π : B(R) → L (H ) from the σ−algebra B(R) of Borel subsets of R into the

algebra of bounded linear operators on H such that

(1) Π is an orthogonal projection for every E ∈ B(R);

(2) Π(∅) = 0, Π(R) = I (the identity operator);

14



(3) for every countable disjoint union E of sets En ∈ B(R),

E =
∞∐
j=1

En,

Π(E) = lim
n→∞

n∑
j=1

Π(Ej),

where the limit is taken in the strong topology on L (H ).

To every projection-valued measure Π there is associated the projection-valued function

Π(λ) = Π((−∞, λ]),

called the projection-valued resolution of the identity which is characterized by the

following properties:

(1) Π(λ)Π(µ) = Π(min {λ, µ});
(2) in the sense of strong topology on L (H ),

lim
λ→−∞

Π(λ) = 0, lim
λ→∞

Π(λ) = I;

(3)

lim
µ→λ
µ<λ

Π(µ) = Π(λ),

where the limit is again taken with respect to the strong topology on L (H ).

It can be shown that for every ψ ∈ H the resolution of the identity defines a distribution

function (Π(λ)ψ, ψ) of bounded measure on R, which is in fact a probability measure if

‖ψ‖ = 1.

The so called spectral theorem dating back essentially to von Neumann can be summarized

as follows (see [33]):

Theorem 2 (von Neumann’s spectral theorem). For every self-adjoint operator A on the

Hilbert space H corresponding to a given quantum system there exists a unique projection-

valued resolution of the identity Π(λ) = ΠA(λ) such that:

(1) For every ϕ ∈ D(A),

Aϕ =

∫ ∞
−∞

λ dΠ(λ)ϕ, (16)

where

D(A) =

{
ϕ ∈H :

∫ ∞
−∞

λ2 d(Π(λ)ϕ, ϕ) <∞
}

and the integral in (16) is understood as the usual spectral integral with respect to the

operator-valued measure, see [7] or [32]. Moreover, the support of the corresponding

projection-valued measure ΠA coincides with the spectrum σ(A) of the operator A,

i.e. λ ∈ σ(A) if and only if ΠA((λ− ε, λ+ ε)) 6= 0 for every ε > 0.

15



(2) For every continuous function f on R, f(A) is a linear operator on H defined for

every ϕ ∈ D(f(A)) by

f(A)ϕ =

∫ ∞
−∞

f(λ) dΠ(λ)ϕ, (17)

with the integral understood as in (16) and with D(f(A)) a dense domain in H ,

D(f(A)) =

{
ϕ ∈H :

∫ ∞
−∞
|f(λ)|2 d(Π(λ)ϕ, ϕ) <∞

}
.

Moreover, for the operator f(A)

f(A)∗ = f(A),

where f denotes the complex conjugate function of f and the operator f(A) is bounded

if and only if the function f is bounded on σ(A); for functions f and g that are

bounded on σ(A) we have for every ϕ ∈H

f(A)g(A)ϕ =

∫ ∞
−∞

f(λ)g(λ) dΠ(λ)ϕ.

(3) For every measurable function f which is in addition finite a.e. with respect to the

projection-value measure Π, f(A) is a linear operator on H defined as in (17),

this time with the integral for f(A)ϕ understood in the weak sense, i.e. for every

ϕ ∈ D(f(A)) and for every ψ ∈H ,

(f(A)ϕ, ψ) =

∫ ∞
−∞

f(λ) d(Π(λ)ϕ, ψ), (18)

where the integral in (18) is the usual Lebesgue-Stieltjes integral with respect to a

complex measure (Π(λ)ϕ, ψ) on R given by the polarization identity

(Π(λ)ϕ, ψ) =
1

4
{(Π(λ)(ϕ+ ψ), ϕ+ ψ)− (Π(λ)(ϕ− ψ), ϕ− ψ) +

+ i(Π(λ)(ϕ+ iψ), ϕ+ iψ)− i(Π(λ)(ϕ− iψ), ϕ− iψ)}

(we recall that a measurable function f on R is finite a.e. with respect to the projection-

valued measure Π if it is finite with respect to the measure (Πψ, ψ) for every ψ ∈H

and that it can be shown that, for a separable Hilbert space H , for every projection-

valued measure Π there exists ϕ ∈H such that a function f is finite a.e. with respect

to Π if and only if it is finite a.e. with respect to the measure (Πϕ, ϕ).) The correspon-

dence f 7→ f(A) moreover satsifies the same properties as in the case of continuous

functions, only with all the integrals understood in the weak sense.

(4) A bounded operator B commutes with the operator A, i.e. B(D(A)) ⊂ D(A) and

AB = BA on D(A), if and only if B commutes with Π(λ) for every λ, i.e. if and

only if B commutes with every operator f(A).

(5) For every projection-valued resolution of the identity Π(λ) the operator A on H

defined by (16) is self-adjoint.
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For a nice exposition of the spectral decomposition of operators as well as other ingredients

that are present in Theorem 2, including some historical remarks, we refer to the second

volume of the book [7] which has detailed proofs of most of the results listed here or to the

book [32].

By means of Theorem 2 it is now possible to give an explicit description of the correspon-

dence (15): we take A ∈ A and M ∈ S and we actually postulate that the assignment

(A,M) 7→ µA is defined by the so called Born-von Neumann formula:

µA(E) = Tr ΠA(E)M, for every E ∈ B(R),

where ΠA is the corresponding projection-valued measure on R associated with the self-

adjoint operator A.

The correspondence between projection-valued measures Π and self-adjoint operators

given in Theorem 2 has several important consequences. For example, since positive lin-

ear operators on a complex Hilbert space are self-adjoint and since S is defined to be the

space of positive operators of trace class, whose trace is equal to one, in particular every

M ∈ S is a compact operator, we have, according to the classical Hilbert-Schmidt theorem

on the decomposition of compact self-adjoint operators, that there is an orthonormal system

{ψn} such that

M =
N∑
n=1

αnPψn , TrM =
N∑
n=1

αn = 1,

where αn > 0 are eigenvalues of M and N is understood to be equal to ∞ when the system

{ψn} is infinite. We thus have

µA(E) =
N∑
n=1

αn(ΠA(E)ψn, ψn) =
N∑
n=1

αn‖ΠA(E)ψn‖2 ≤
N∑
n=1

αn = 1,

which means that indeed 0 ≤ µA(E) ≤ 1 and, denoting by µA(λ) the corresponding distri-

bution function associated to the probability measure µA, we have for ψ ∈H , ‖ψ‖ = 1 and

for M = Pψ, that µA(E) = (ΠA(λ)ψ, ψ).

Another important consequence of the approach taken above is that trying to generalize

the Born-von Neumann formula to the case of finitely many observables A = {A1, . . . , An},
we would probably expect that simultaneous measurement of a finite set of observables A

in a state M ∈ S should result in a certain probability measure µA given by the formula

µA(E) = Tr (ΠA1(E1) . . .ΠAn(En)M), E = E1 × . . .× En ∈ B(Rn). (19)

It can be shown, however, that this is not the case in general. The necessary and sufficient

condition for the right-hand side of (19) to define a probability measure on Rn is that the

composition ΠA1(E1) . . .ΠAn(En) defines a projection-valued measure on Rn which is in

turn the case only if the projection operators ΠAi commute. This is actually the case if and

only if, by definition, the (probably unbounded) self-adjoint operators A1, . . . , An form a
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commutative family. In such a case it is indeed possible to show that for such a finite set of

pair-wise commuting self-adjoint opperators A = (A1, . . . , An) on H there exists the unique

projection-valued measure ΠA on the set B(Rn) of Borel subsets in Rn such that for every

E = E1 × . . .× En ∈ B(Rn)

ΠA(E) = ΠA1(E1) . . .ΠAn(En)

and whose support is the so called joint spectrum of the commutative family A. We

conclude that5 a finite set of observables A = {A1, . . . , An} can be measured simultaneously

if and only if they form a commutative family and that the simultaneous measurement of

the family A in the state M ∈ S is described by the probability measure µA whose action

on Borel subset of Rn is given by (19).

Example 8. One of the most simplest examples of the phenomenon described in our previous

discussion and at the same time one of the fundamental assumptions connecting quantum

mechanics with the classical mechanics is the quantum-mechanical analogue of the motion

of a single particle moving in Rn which somehow reflects a kind of correspondence between

quantum and classical mechanics, of which the former is a deformation of a sort (we shall

give a somewhat detailed treatment of this issue in Section 3.6). We take as the Hilbert

space H the space L2(Rn) (whose elements are viewed as functions of the position variables

qj) and we define the operators Qi and Pi (the quantum analoques of coordinate functions qi

and pi on the phase space M = R2n, called the position and the momentum operators,

respectively) to be

Qi : ψ 7→ qiψ, (20)

Pi : ψ 7→ h

2πi

∂f

∂qi
. (21)

Of course neither of the operators Qi and Pi maps the whole of L2(Rn) into itself, since

it can well happen that for ψ ∈ L2(Rn), qiψ is not an element of L2(Rn), or ψ may fail

to be differentiable at all. In fact, it is understood that the operators Qi, Pi are defined

on an appropriate dense subset of L2(Rn) so that they are unbounded operators (by

definition). Furthermore, it can be verified directly that the operators Qi, Pi satisfy the so

called canonical commutation relations6

[Qi, Qj] = [Pi, Pj] = 0 for every i, j;

[Qi, Pj] = 0 for i 6= j;

[Qi, Pi] =
ih

2π
I,

5This last assertion is in fact another postulate which together with all the assumptions made above form

the backbone of what is known as Dirac-von Neumann axioms of quantum mechanics, see [33].
6Sometimes also called Heisenberg commutation relations.
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where [A,B] = AB −BA is the commutator of the operators A and B. �

In fact, the canonical commutation relations, and especially the simultaneous nonmea-

surability of position and momentum operators is just a reflection of a much more general

phenomenon. Indeed, if we define the variance of the observable A in the state M by

σ2
M(A) = 〈(A− 〈A|M〉I)2|M〉 = 〈A2|M〉 − 〈A|M〉2 ≥ 0,

provided the expectation values 〈A2|M〉 and 〈A|M〉 exist, then we can prove the following

result, the so called (generalized) Heisenberg’s uncertainty relations:

Theorem 3. Let A,B ∈ A and let M = Pψ be a pure state such that ψ ∈ D(A) ∩ D(B)

and Aψ,Bψ ∈ D(A) ∩D(B), then

σ2
M(A)σ2

M(B) ≥ 1

4
〈i [A,B] |M〉2. (22)

The relation (22) is just a qualitative expression of the fact that non-commuting observ-

ables cannot be measured simultaneously even if they are in a pure state.

We close this section with a quantum-mechanical analogue of the Hamiltonian picture in

classical mechanics. This is the so called Heisenberg picture of quantum mechanics in

which the states do not depend on time:

dM

dt
= 0, for M ∈ S ,

and bounded observables satisfy the Heisenberg equation of motion

dA

dt
= {H,A}~ , A a bounded element of A (23)

where ~ is the reduced Planck constant, ~ = h/2π, and {·, ·}~ is the quantum bracket

defined by

{·, ·}~ =
i

~
[·, ·] . (24)

Here the solutions of the equation (23) are understood by means of strongly continuous

one-parameter group of unitary operators defined via the functional calculus of self-adjoint

operators using Theorem 2 by

eitA =

∫ ∞
−∞

eitλ dΠ(λ), t ∈ R,

where A is a self-adjoint operator on H . In case of (23), we take the self-adjoint operator

H and define

U(t) = e−
i
~ tH , t ∈ R,

so that U(t) satisfies the differential equation

i~
dU(t)

dt
= HU(t) = U(t)H
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in the strong sense on D(H) and the quantum dynamics is given by the formula

A(t) = U(t)−1AU(t),

where A(t) is the solution to (23) with the initial condition A(0) = A ∈ A0 (here A0 denotes

the space of bounded observables from A ) and in this sense all quantum observables satisfy

the Heisenberg equation of motion (23).

Remark 6. For an alternative (and in fact equivalent) description of the dynamics of quan-

tum system, usually called the Schrödinger picture, which is a quantum analogue of the

Liouville picture in classical mechanics, see [33].

3.6. The concept of quantization. Generally and informally speaking, quantization is a

way to describe the correspondence between classical and quantum systems. This in partic-

ular means that on the usual “macroscopic” level the quantum mechanics should collapse

into the classical one, which is a fundamental dictum of quantum mechanics going back to

Bohr, Ehrenfest and other founders of quantum mechanics. On the mathematical side, this

correspondence is expressed as a mapping f → Qf (see the discussion done in section 3.5),

which assigns to a classical observable f an (probably unbounded, self-adjoint) operator Qf

on a Hilbert space H in such a way that

(A) The quantum counterparts of the position and momentum coordinates qi and pi

should be the operators Qi and Pi given by (20) and (21).

(B) For any pair of classical observables f, g

Qf+g = Qf +Qg.

(C) For any Borel function φ : R→ R, if E ⊂ R and Q is a probabilistically determined

quantity, the probability that φ(Q) ∈ E is the same as the probability that Q ∈
φ−1(E). This means that if Qf =

∫
λdΠ(λ), the spectral projections for Qφ◦f should

be Πφ◦f (E) = Πf (φ
−1(E)). These can be shown to be the spectral projections for the

operator φ(Af ) defined again by means of the spectral functional calculus. Hence it

should be that

Qφ◦f = φ(Qf ).

(D) Finally, the Bohr correspondence principle is expressed by means of the formula

[Qf , Qg] = − ih

2π
Q{f,g},

where

{f, g} :=
n∑
j=1

(
∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
is the (canonical) Poisson bracket.
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We call the domain of the mapping Q : f 7→ Qf the space of quantizable observables

and we would like it ideally to include at least the class of smooth functions C∞(R2n).

It turns out, however, that this set of requirements on the quantization procedure is

severely logically inconsistent to a great extent even in the simplest case of R2n, for details

on that issue see [1], [17] or [20]. One possible way out of this embarrassing situation is the

so called deformation quantization, whose basic idea is best explained by the following

important example, taken from [17]:

Example 9 (Weyl quantization). Consider the phase space R2n. For sufficiently nice func-

tions f , say f ∈ S(R2n), the Schwartz space of smooth functions, we can write

f(p,q) =

∫
Rn

∫
Rn
f̂(ξ, η) e2πi(ξ·p+η·q) dξ dη, (25)

where f̂ is the usual Fourier transform defined for every f ∈ S(Rn) by:

f̂(ξ) =

∫
Rn

e−2πix·ξf(x) dx,

with the inverse

f̌(x) =

∫
Rn

e2πix·ξf(ξ) dξ.

Regarding our previous discussion, we would like to assign to functions f a certain operator

Qf thus extending the domain of quantizable observables on R2n from just coordinate func-

tions qi, pi to “arbitrary” functions7 on R2n. This is done by extending (25) to its “operator-

valued” analogue with p and q replaced by Qp ≡ (P1, . . . , Pn) and Qq = (Q1, . . . , Qn) (see

(20) and (21) for the definitions of Qi and Pi.) Indeed, from the definition of Qpi ≡ Pi in (21)

and from the Taylor expansion of the exponential it follows that for suitable ψ ∈ L2(Rn),

e2πiξ·Qpψ(q)

= e2πiξ1Qp1+...+2πiξnQpnψ(q) = ψ(q1 + hξ1, . . . , qn + hξn)

= ψ(q + hξ)

and similarly

e2πiη·Qqψ(q) = e2πiη·qψ(q).

In fact, expending some more extra work, one can even show that the correct substitute for

e2πi(ξ·p+η·q) acts like this:

e2πi(ξ·Qp+η·Qq)ψ(q) = e2πiη·q+πihη·ξψ(q + hξ), (26)

so that if we formally define

Qf =

∫
Rn

∫
Rn
f̂(ξ, η) e2πi(ξ·Qp+η·Qq) dξ dη ≡ Wf (27)

7The arbitrariness is still understood to be restricted to functions of the Schwartz class S(R2n), to be

precise, though extensions can be made e.g. to all tempered distributions.
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(which is sometimes called the Weyl transform), we have by (26), making the change of

variables ξ 7→ ξ−q
h

and using Plancherel’s theorem, that

Wfψ(q) =

∫
Rn

∫
Rn
f̂(ξ, η) e2πiη·q+πihη·ξψ(q + hξ) dξ dη

=
1

hn

∫
Rn

∫
Rn
f̂

(
ξ − q

h
, η

)
eπiη·(q+ξ)ψ(ξ) dξ dη

=
1

hn

∫
Rn

∫
Rn
f

(
p,

q + y

2

)
e

2πi
h

(q−y)·pψ(y) dy dp.

It can be shown that for f ∈ S(R2n), Wf is even continuous operator from S(Rn) into itself

and that for such f and g we have

WfWg = Wfg + hWC1(f,g) +O(h2)

for h→ 0, where C1(f, g) is a multiple of the Poisson bracket given by

{f, g} :=
i

4π

n∑
j=1

(
∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
,

for which

C1(f, g)− C1(g, f) = − i

2π
{f, g},

so that

[Wf ,Wg] = − ih

2π
W{f,g} +O(h2) for h→ 0. (28)

One can go even further and show that there exist bidifferential operators C2, C3, . . . such

that

WfWg = Wfg + hWC1(f,g) + h2WC2(f,g) + h3WC3(f,g) +O(h4) for h→ 0

and similarly for higher powers. The procedure of expanding WfWg as above is sometimes

written symbolically as

WfWg = Wf∗g, (29)

where

f ∗ g = fg + hC1(f, g) + h2C2(f, g) + h3C3(f, g) + . . . , (30)

a formal power series in h with the understanding that (30) is just an asymptotic expansion

WfWg =
N−1∑
j=0

hjWCj(f,g) +O(hN) as h→ 0

for every N = 0, 1, 2 . . . . �

The point here is that if we somewhat weaken our quantization requirements (A) to (D)

in such a way that we retain the canonical quantization (A), the linearity (B), and the

correspondence principle (D) only in an appropriate approximate sense:

[Qf , Qg] = − ih

2π
Q{f,g} +O(h2) as h→ 0,
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and if we discard the condition (C) with the sole exception that we do require Q1 = I, where

1 is the constant function one and I is the identity operator, then the Weyl transform is

in fact a special instance of the deformation quantization described as follows: consider a

(symplectic or, more generally, Poisson) manifold M and the ring C∞(M)JhK of formal power

series with coefficients in C∞(M). We define a star-product to be an associative mapping

∗ such that

f ∗ g =
∞∑
j=0

hjCj(f, g) for every f, g ∈ C∞(M),

where the operators Cj satisfy the identities

C0(f, g) = fg, C1(f, g)− C1(g, f) = − i
2π
{f, g},

Cj(f,1) = Cj(1, f) = 0 for every j ≥ 1

and the mapping ∗ is CJhK−bilinear. In Example 9 the corresponding star-product is given

by (29).

Remark 7. For a connection of the Weyl correspondence with the theory of pseudodiffer-

ential operators due to Kohn and Nirenberg, see for example [23], [21] or [20] and references

therein.

Despite the fact that the Weyl correspondence is probably the first general quantization

procedure ever invented and in certain respects also one of the most satisfactory ones, its

major drawback is that it is narrowly connected to R2n by means of the Fourier transform.

A second objection goes to the fact that the deformation quantization as sketched above is

only a formal procedure without any assumptions on convergence of the formal power series.

To obtain a generalization to other domains, as well as a way to construct star-products

that are somehow connected with the geometry and analysis of the given manifold, we can

resort to an idea going back to Berezin [8] and employ the concept of weighted Bergman

spaces introduced in Section 2. This approach is illustrated in the next section using certain

special submanifolds in Cn.

4. Berezin quantization

In this section, we closely follow [17]. Consider the weighted Bergman space A2(Ω, ρ) with

Ω a domain in Cn such that the (positive and continuous) weight function ρ is integrable

with respect to the Lebesgue measure λ (this last minor technical assumption is required

for the weighted Bergman kernel Kρ(x, y) to satisfy Kρ(x, x) = ‖Kρ,x‖2 > 0.) We define the

Berezin symbol T̃ of an operator T on A2(Ω, ρ) to be a function on Ω defined by

T̃ (x) =
〈TKρ,x, Kρ,x〉
Kρ,x, Kρ,x

= 〈Tkρ,x, kρ,x〉 for every x ∈ Ω, where kρ,x =
Kρ,x

‖Kρ,x‖
.

We remark that it can be quite easily verified that the mapping T 7→ T̃ is one-to one.
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No less important is the Toeplitz operator on A2(Ω, ρ) defined for every φ ∈ L∞(Ω) by

Tφf = Pρ(φf),

where Pρ is the weighted Bergman projection Pρ : L2(Ω, ρ)→ A2(Ω, ρ) (in fact an orthogonal

projection onto A2(Ω, ρ)). Summing up, we have a mapping assigning an operator Tf acting

on A2(Ω, ρ) to a bounded function f and a mapping assigning a function T̃f to the operator

Tf . The composition of these two mappings is denoted by Bρf and called the Berezin

transform. We have (for every f ∈ L∞(Ω))

Bρf = T̃f ,

or equivalently

Bρf(x) =
〈fKρ,x, Kρ,x〉
Kρ,x, Kρ,x

=

∫
Ω

f(y)
|Kρ(x, y)|2

Kρ(x, x)
ρ(y) dy.

Now for the weights ρ and domains Ω as discussed above, and due to the injectivity of the

map T 7→ T̃ , we can identify operators with functions and define a (clearly noncommutative)

product ∗ρ as a binary operation on a certain set Aρ of functions on Ω defined by

S̃ ∗ρ T̃ = S̃T ,

where S̃ is the Berezin symbol of an operator S. Hence (see the definition of the Berezin

symbol) the product f ∗ρ g is defined only for those f and g that can be written as Berezin

symbols of certain operators on A2(Ω, ρ), which means that in fact

Aρ =
{
T̃ : T is a continuous linear operator on A2(Ω, ρ)

}
.

The idea of the Berezin quantization is to find a family of weights ρ = ρ(h) ≡ ρh such

that

A =
⋂
h>0

Aρh

is big enough for certain bidifferential operators Cj(·, ·) to be uniquely determined by their

values on functions f, g ∈ A and the Cj’s are such that for every f, g ∈ A

f ∗ρh g =
∞∑
j=0

hjCj(f, g)

asymptotically for h→ 0, where C0(f, g) = fg and

C1(f, g)− C1(g, f) =
i

2π
{f, g}

for a given Poisson bracket {·, ·} on Ω.

Then it can be shown that the bidifferential operators Cj define a star-product

f ∗ g =
∞∑
j=0

hjCj(f, g) (31)
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for every f, g ∈ C∞(Ω), called the Berezin star-product. In fact, the problem of finding

appropriate weights ρh reduces to a problem of finding the weights ρh in such a way that the

associated Berezin transforms Bρh ≡ Bh have an asymptotic expansion of the form

Bh = Q0 + hQ1 + h2Q2 + . . . , for h→ 0, (32)

with Qj being certain differential operators such that Q0 = I, the identity operator. In such

a case, writing

Qj(f) =
∑

α,β multiindices

cjαβ∂
α∂̄βf

and setting

f ∗B g =
∞∑
j=0

hjCj(f, g),

where

Cj(f, g) =
∑

α,β multiindices

cjαβ
(
∂̄βf

)
(∂αg) ,

it can be shown that if

C1(f, g)− C1(g, f) =
i

2π
{f, g},

then f ∗B g coincides with the Berezin star-product (31) for every f, g ∈ C∞(Ω).

One of the main results on the existence of the appropriate weights for which the expansion

(32) is valid and which at the same time takes into account the geometric properties of the

given domain Ω is the following:

Theorem 4 (see [17]). Let Ω ⊂ Cn be smoothly bounded and strictly pseudoconvex, and Φ

a strictly plurisubharmonic function on Ω such that e−Φ = r is a defining function for Ω.

Then for the weights w = e−αΦdet(∂∂̄Φ), we have as α→ +∞, α ∈ Z,

Kα(x, x) ∼ eαΦ(x)α
n

πn

∞∑
j=0

bj(x)

αj

with certain functions bj ∈ C∞(Ω), b0 = det(∂∂̄Φ) and

Bαf =
∞∑
j=0

Qjf

αj
,

where Qj are some differential operators with Q0 = I and

Q1 =
n∑

j,k=1

gj̄k
∂2

∂zk∂z̄j
= ∆,

the Laplace-Beltrami operator, and gj̄k is a matrix inverse to the matrix gjk̄ = ∂2Φ
∂zj∂z̄k

.
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We recall that a bounded domain Ω ⊂ Cn with smooth boundary is strictly pseudocon-

vex8 if there exists a smooth function r : Ω → R, called a (strictly plurisubharmonic)

defining function for Ω, such that

(i) r > 0 on Ω,

(ii) r = 0, ‖∇r‖ > 0 on ∂Ω,

(iii) −r is a strictly plurisubharmonic function in a neighbourhood of cl Ω;

(a smooth function Φ : Ω→ R is strictly plurisubharmonic if for every z ∈ Ω and every

v ∈ Cn the function φ : t 7→ Φ(z + tv), t ∈ C, is strictly subharmonic wherever defined. For

a good treatment of the concept of subharmonic and plurisubharmonic functions, see [25].)

Remark 8. For the sake of simplicity the whole discussion in this section has been done for

Ω a domain in Cn. It turns out that all this machinery can be extended even to general Kähler

manifolds with certain technical adjustments, see for example [1]. For further information on

other types of domains, where the expansion (32) is actually true, see also [15] and references

therein.

5. The harmonic Berezin transform - known results

As we have seen, all the main ingredients in the Berezin quantization procedure as

described briefly in Section 4, have been hitherto intimately connected solely with the

(weighted) holomorphic Bergman spaces. What is not that clear is why should holomoprhic

functions have anything in common with quantization procedures and a natural question

therefore is whether also other reproducing kernel Hilbert spaces could be used enabling one

to ultimately extend the quantization procedures not only to Kähler manifolds but also to

symplectic manifolds, say.

Here, the situation gets quite convoluted. On one hand, it turns out that instead of spaces

of holomorphic functions one could indeed equally well use the spaces of square-integrable

harmonic functions mentioned already in Section 2.2 or, even more generally, spaces of

square-integrable functions L2
A of functions that are annihilated by a given fixed hypoelliptic

partial differential operator A (of which both holomorphic and harmonic Bergman spaces

are special instances) for general operator symbols as well as Toeplitz operators to make

sense, see [15].

On the other hand, it can be proved at the same time that the Berezin quantization

procedure generally breaks down even in the case of harmonic Bergman spaces since the

correspondence between operators and their Berezin symbols is not one-to-one anymore, see

[15] again.

8In general, pseudoconvex domains are natural domains for holomorphic functions in Cn, see [25] and the

related discussion therein.
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That much being said, the more interesting seems to be that asymptotic expansions of

the form (32) are available also in the context of some harmonic Bergman spaces as we will

try to illustrate in the present section.

As a first example, it has been proved in [16] that for the harmonic (rather than holomor-

phic) Segal-Bargmann (Fock) space on Cn ∼= R2n, i.e. the space

Hh := {f ∈ L2(R2n, ρ) : ∆f = 0},

introduced in Example 6, there is the following result:

Theorem 5 (see [16]). Let R be an operator given by the formula

R =
n∑
j=1

(
zj

∂

∂zj
+ zj

∂

∂zj

)
=

m∑
j=1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
,

where zj = xj + iyj, acting on R2n ∼= Cn. Then there are linear differential operators

R0, R1, . . . on R2n \ {0} of the form

Rj =
∑
k,l≥0

k+2l≤2j

ρjkl|y|2l−2jRk∆l

with some constants ρjkl (depending only on n), such that for any y 6= 0 and for any f ∈
L∞(R2n) smooth in a neighbourhood of y, the harmonic Berezin transform Bharm

h associated

to the spaces Hh has the asymptotic expansion

Bharm
h f(y) ∼

∞∑
j=0

Rjf(y)

αj
as α→∞. (33)

Furthermore, R0 is the identity operator,

R1 =
∆

4(2n− 1)
+

(4n− 3)(n− 1)

2(2n− 1)|y|2
R +

n− 1

2(2n− 1)|y|2
R2,

and

Bharm
h f(0) ∼

∞∑
j=0

∆jf(0)

j!(4α)j
as α→∞. (34)

Note that (33) doesn’t actually reduce to (34) in case y = 0, (where even the operator R1

is singular) which suggests that Bharm
h enjoys quite an abruptive behaviour at y = 0 (this is

in fact a manifestation of the so called Stokes phenomenon).

As a second example of an expansion akin to (32), we take the harmonic Bergman space

of functions on the unit ball in Rn from Example 7. It has been shown in [11] that for the

corresponding Berezin transform

(Bαf)(x) :=

∫
Bn

f(y)
K2
α(x, y)

Kα(x, x)
dµnα(y), (35)

where

dµnα(y) := cα(1− |y|2)αdny, α > −1,

27



with

cα =
Γ
(
α + n

2
+ 1
)

πn/2α!
,

the following result is true:

Theorem 6 (see [11]). For x 6= 0, n > 1, and f ∈ C∞(Bn), there exist differential operators

Qi := Qi

(
∆, x · ∇, |x|2

)
, involving only the Laplace operator ∆, the directional derivative

x · ∇ and the quantity |x|2, such that

(Bαf) (x) =

∫
Bn

f(y)
R2
α(x, y)

Rα(x, x)
dµnα(y) ∼

∞∑
i=0

Qif(x)

αi
(α→∞),

where Q0 = I and

Q1 =
n− 2

2

1− |x|2

|x|2
x · ∇+

(n− 2)(1− |x|2)2

4(n− 1) |x|2
(x · ∇)2 +

1

4(n− 1)
(1− |x|2)2∆.

Moreover, for x = 0 it holds

(Bαf) (0) ∼
∞∑
i=0

∆if(0)

4i
(
α + n

2
+ 1
)
i

(α→∞).

Again, also in Theorem 6 a kind of Stokes phenomenon is clearly present for x = 0. In the

next section we describe yet another result of this kind for the harmonic Bergman space of

functions on the half-space.

6. Asymptotic expansion of the harmonic Berezin transform on the

half-space

In the paper [22], constituting a part of the thesis, we are addressing the question of

whether the harmonic analogue of the expansion (32), corresponding to the weighted har-

monic Bergman space B2(H, ρ), where H is the upper half-space {(x, y) ∈ Rn × R : y > 0}
and ρ(x, y) = yα, where α > −1, holds true.

It turns out that, surprisingly or not, such an expansion is indeed available and this is the

main result of [22]. More explicitly, denoting the corresponding Berezin transform by Bα :

Bαf(x, y) =
1

Kα(x, y;x, y)

∫
Rn

∫ ∞
0

f(z, w)|Kα(x, y; z, w)|2 wα dw dz,

where Kα is the reproducing kernel of H and f ∈ L∞(H) = L∞(H, ρ) we have the following:

Theorem 7 (see [22]). For any f ∈ L∞(H) ∩ C∞(H),

(Bαf) (x, y) ∼
∞∑
j=0

Rjf(x, y)

αj
(36)
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as α −→ +∞ for every (x, y) ∈ H, where Rj are certain differential operators, with

R0f(x, y) = f(x, y) (R0 thus being the identity operator) and

R1f(x, y) = y2 ∆f(x, y)

n
+ (1− n)y

∂f

∂y
(x, y) + y2∂

2f

∂y2
(x, y),

where ∆ =
∑n

i=1
∂2

∂x2
i
.

The proof of Theorem 7 is done in several steps. First of all, we note that the sym-

metry of H both with respect to horizontal translations as well as to dilations leaves the

harmonic functions invariant under these special transformations which has the effect that

upon denoting fa,b(x, y) := f(bx + a, by) (here a ∈ R and b > 0) we obtain that for any

f ∈ L∞(H),

(Bαf)(a, b) = (Bαf
a,b)(0, 1).

This in turn shows that to prove Theorem 7 it is in fact enough to prove that for every

f ∈ L∞(H)

(Bαf) (0, 1) ∼
∞∑
k=0

Qkf(0, 1)

αk
, α −→ +∞, (37)

where Qkf(x, y) = Qkf
x,y(0, 1) for every (x, y) ∈ H.

At this point, using the abbreviation Hα(x, y) := Kα(x, y; 0, 1), we show that upon per-

forming Fourier transform with respect to the x−variable, there is the following integral

representation of Hα :

Hα(x, y) =
1

(2π)nΓ(α + 1)

∫
Rn

(2|ξ|)α+1e−(y+1)|ξ|eiξ·x dξ,

or, in spherical coordinates, ξ = rζ, r > 0, ζ ∈ Sn−1,

Hα(x, y) =
2α+1

(2π)nΓ(α + 1)

∫ ∞
0

∫
Sn−1

rα+ne−(y+1)reirζ·x dσ(ζ) dr.

Transforming the last integral slightly via the changes r 7→ r
y+1

and r 7→ αr yields

Hα(x, y) =
2α+1αα+n+1

(2π)nΓ(α + 1)(y + 1)α+n+1eα

∫ ∞
0

∫
Sn−1

rα+ne(1−r)αei rαζ·x
y+1 dσ(ζ) dr. (38)

In the form (38), the kernel Hα already helps us to fix the expansion (37). Indeed, if we plug

(38) into the very definition of the Berezin transform, we can write

Bαf(0, 1) =
1

Hα(0, 1)

(
2α+1αα+n+1

(2π)nΓ(α + 1)eα

)2 ∫ ∞
0

∫
Rn

f(z, w)
wα

(w + 1)2α+2n+2

×
∫ ∞

0

∫ ∞
0

∫
Sn−1

∫
Sn−1

rnsn
( r

er−1

s

es−1

)α
e

iα(rζ−sη)·z
w+1 dσ(ζ) dσ(η) dsdr dz dw. (39)

It is a consequence of a well-known result from harmonic analysis on the existence of left

and right invariant Haar measure g on the orthogonal group O(n) (which is in fact a compact
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Lie group) that for every function F that is continuous on Sn−1,∫
Sn−1

F (ζ) dσ(ζ) = ωn

∫
O(n)

F (ge1) dg,

where ωn = 2π
n
2

Γ(n
2

)
is the total volume of the sphere, g ∈ O(n) and e1 = (1, 0, . . . , 0) ∈ Sn−1.

This observation enables us to finally rewrite the integral (39) in the form

Bαf(0, 1) =
ωn

Hα(0, 1)

(
2α+1αα+n+1

(2π)nΓ(α + 1)eα

)2 ∫ ∞
0

∫ ∞
0

∫
Rn

∫
Rn

f ∗(|z|, w)|y|sn

(w + 1)2n+2(
w

(w + 1)2

|w|
e|w|−1

s

es−1
e
i(y−se1)·z

w+1

)α
dy dz dsdw, (40)

where f ∗(t, w) :=
∫
O(n)

f(gte1, w) dg. This is in fact an integral of the form

I(α) =

∫
Ω

F (x)eαS(x) dx,

to which, as it is possible to verify, the standard multidimensional Laplace method of

asymptotic expansions of integrals of this type can be applied:

I(α) ∼
(

2π

α

)dimΩ
2 eαS(x0)

|Hess S(x0)|1/2
∞∑
j=0

(
3j∑
k=j

1

k!(k − j)!2k
LkS(S(x, x0)k−jF (x))

∣∣
x=x0

)
α−j,

as α −→ +∞ (here Hess S(x0) is the determinant of the matrix

A = −
(
∂2S(x0)

∂xjxk

)dimΩ

j,k=1

, (41)

LS is the constant-coefficent differential operator on Ω given by the formula

LS =
dimΩ∑
j,k=1

(A−1)j,k
∂2

∂xjxk
,

where A−1 is the inverse of the matrix (41), and

S(x, x0) := S(x)− S(x0) +
1

2
〈A(x− x0), x− x0〉).

Thus, in the context of the integral (40), taking Ω := R+ × R+ × Rn × (Rn \ {0}), x =

(w, s, z, y) ∈ Ω,

F (x) :=
f ∗(|z|, w)|y|sn

(w + 1)2n+2

and

S(x) := ln
w

(w + 1)2
+ (lns+ 1− s) +

i(w − se1) · z
w + 1

+ (ln|y|+ 1− |y|),

we obtain the asymptotic expansion

Bαf(0, 1) ∼ cα,n

∞∑
j=0

(
3j∑
k=j

1

k!(k − j)!2k
LkS(S(x, x0)k−jF (x))

∣∣
x=x0

)
α−j,
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where

cα,n :=
ωn

Hα(0, 1)

(
2α+1αα+n+1

(2π)nΓ(α + 1)eα

)2(
2π

α

)n+1
eαS(x0)

|Hess S(x0)|1/2
.

This is almost what we need and after we unwrap the corresponding definitions and after a

substantial deal of computation, we do indeed arrive at the desired formula

Bαf(0, 1) ∼
∞∑
k=0

Qkf(0, 1)

αk
, α −→ +∞,

with Q0f(0, 1) = f(0, 1), so that Q0f(x, y) = Q0f
x,y(0, 1) = fx,y(0, 1) = f(x, y), and

Q1f(0, 1) = (∆xf)(0,1)
n

+ (1 − n)∂f
∂y

(0, 1) + ∂2f
∂y2 (0, 1), so that R1f(x, y) = R1f

x,y(0, 1) =

y2 ∆f
n

(x, y) + (1− n)y ∂f
∂y

(x, y) + y2 ∂2f
∂y2 (x, y) for every (x, y) ∈ H.

Remark 9. We note that, unlike for the harmonic Fock space or for the unit ball in Rn, no

Stokes phenomenon is present in the assertion of Theorem 7.

7. Berezin transform of two arguments

In the paper [12], which forms the second part of the thesis, we study the asymptotic

properties analogous to (32) of a “natural” extension of the Berezin transform of functions

bounded on a suitable domain Ω, treating it as a restriction to the diagonal x = z of a

function of two arguments defined by

B2
αf(x, z) =

〈fKα,z, Kα,x〉
〈Kα,z, Kα,x〉

=

∫
Ω

f(y)
Kα(x, y)Kα(y, z)

Kα(x, z)
ρα(y) dy, (42)

the right-hand side of (42) being of course defined whenever Kα(x, z) 6= 0.

The paper [12] consists of two parts. In the first part we deal with the transform (42)

in the context of holomorphic Bergman spaces. To be more specific, we consider the Segal-

Bargmann or Fock space Fα of all entire functions in Cn that are square-integrable with

respect to the measure

µ2n
α (y, ȳ) =

(α
π

)n
e−α|y|

2

λ(y),

where λ(y) is the usual 2n-dimensional Lebesgue volume measure with the factor (α/π)n

chosen so that the whole space is of measure one.

As we know from Example 4, the corresponding Bergman kernel Kα is the mapping

Cn × Cn 3 (x, y) 7→ Kα(x, y) = eαx·ȳ = eα(x1ȳ1+···+xnȳn) ∈ C.
The main result of the first part, then, is the following: for the holomorphic Berezin

transform B2
αf(x, z) of two arguments defined for f depending on two variables by the

formula

B2
αf(x, z) =

∫
Ω

f(y, y)
Kα(x, y)Kα(y, z)

Kα(x, z)
dµ2n

α (y, ȳ),

we have the following
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Theorem 8 (see [12]). Let f be a polynomial on Cn × Cn. Then, as α −→∞,

(B2
αf)(x, z) ∼ f(x, z̄) +

∂x∂̄zf(x, z̄)

α
+

(∂x∂̄z)
2f(x, z̄)

α22!
+ . . . (43)

The proof of Theorem 8 is quite straightforward and is done essentially by reducing it to

the case of the usual Berezin transform, we refer to [12] for the details.

Remark 10. Note that in case z = x, the expansion (43) is the same as the usual expansion

in (32).

The second part concerns the, admittedly much harder, case of harmonic functions: we

consider the harmonic Fock space Hα of all harmonic functions in Rn that are square-

integrable with respect to the measure

µnα(y) := cαe
−α|y|2λn(y),

where the factor cα :=
(
α
π

)n
2 is again chosen so that the whole space is of measure one and

λn(y) is the Lebesgue volume measure on Rn.

As we already know from Example 6, the corresponding harmonic Bergman kernel Rα(x, y)

in this case is given by the formula

Rα(x, y) = Φ2

(
−
b

;
b b

−
;αux,y, αūx,y

)
,

where b := n
2
− 1, ux,y = x · y + i

√
|x|2 |y|2 − (x · y)2 and Φ2 is a hypergeometric function of

two variables from the Horn’s list (see, [5],[31]):

Φ2

(
−
c

;
b1 b2

−
;x, y

)
=

∞∑
j,k=0

(b1)j(b2)k
(c)j+k

xjyk

j!k!
, ∀x, y ∈ C. (44)

We then show that the asymptotic behaviour (in its principal term) and, accordingly, the

appropriate “limiting point” v, for which (in analogy with the expansion (32))

(B2
αf)(x, z) −→ f(v), α −→∞,

where (B2
αf)(x, z) is the harmonic Berezin transform of two arguments defined9 by the

formula

(B2
αf)(x, z) :=

∫
Rn
f(y)

Rα(x, y)Rα(z, y)

Rα(x, z)
dµnα(y) = (B2

αf)(z, x), (45)

are as in the following two theorems, which naturally complement each other:

9For certain technical reasons, we are forced to restrict ourselves, as it was actually the case already in

Theorem 8, to polynomial functions f on Rn. See also [12] for a somewhat more detailed discussion of this

matter.
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Theorem 9 (see [12]). Let p be a polynomial on Rn, x, z ∈ Rn not collinear. Then for α ∈ C
such that Re (αux,z) > Re (αūx,z), Re (αux,z) > 0, Re (α) > 0, we have

(B2
αp)(x, z) −→ p (v) , |α| −→ ∞,

where

v = vx,z := x
ux,z − |z|2

ux,z − ūx,z
+ z

ux,z − |x|2

ux,z − ūx,z
, ux,z := x · z + i

√
|x|2 |z|2 − (x · z)2,

and the point v ∈ Cn moreover satisfies the following relations:

Re v =
x+ z

2
, v · v̄ = |x+ z|2 + |x− z|2 , v · v = ux,z, x · v =

|x|2 + ux,z
2

,

(x · v)(x · v) =
|x|2 |x+ z|2

4
, ūx,z(x · v) = |x|2 (z · v), (x · v)(z · v) =

ux,z |x+ z|2

4
.

For α ∈ R and ∇p 6= 0, the limit does not exist.

Theorem 10 (see [12]). Let p be a polynomial on Rn, ξ, α > 0, ux,t as above. Then

(1) For z = ξx,

(B2
αp)(x, ξx) −→ p(∇t)e

x·tΦ2

(
−

n− 2
;

n
2
− 1 n

2
− 1

−
;
ξ − 1

2
ux,t,

ξ − 1

2
ūx,t

)∣∣∣∣
t=0

,

α −→∞.

(2) For z = 0,

(B2
αp)(x, 0) −→ p(∇t)Φ2

(
−

n
2
− 1

;
n
2
− 1 n

2
− 1

−
;
1

2
ux,t,

1

2
ūx,t

)∣∣∣∣
t=0

, α −→∞.

(3) For z = −ξx, For p(y) = p1(y, |y|2), where p1 is a linear function in the first argument

and a polynomial in the other, we have

(B2
αp)(x,−ξx) −→ p1

(
x

1− ξ
2

,−ξ |x|2
)
, n > 3 even,

(B2
αp)(x,−ξx) −→ p(0), n > 1 odd,∣∣(B2

α(y1y2))(x,−ξx)
∣∣ −→ ∞, all n > 2.

Remark 11. As seen from the statements of the theorems we were able to supply their

proofs only for polynomials. It is not clear to the authors what techniques are to be used

to prove the corresponding result also for entire integrable functions on Cn or whether it is

even possible to go beyond entire functions at all.

Summed up briefly, the method used to prove Theorem 9 and Theorem 10 is the following:

first we introduce a certain special functional calculus, whose only purpose is to make the

already opaque proofs and formulas as transparent as possible. Namely, suppose p is a
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polynomial of degree m and f is a smooth function. We shall consider expressions of the

form

p(∇x)f(x) :=
m∑
k=0

(∇x∇t)
k

k!
p(t)f(x)

∣∣∣∣
t=0

,

as well as their “dual” counterparts

f(∇x)p(x) :=
m∑
k=0

(∇x∇t)
k

k!
p(x)f(t)

∣∣∣∣
t=0

,

meaning that

p(∇x)f(x)
∣∣
x=0

= f(∇x)p(x)
∣∣
x=0

. (46)

It is then obvious that in the special case when f(y) = et·y, the corresponding operator

acts like a translation

et·∇xp(x) = p(x+ t),

that

p(∇x)e
t·xf(x) = et·xp(t+∇x)f(x),

and

p(∇t)e
t·x∣∣

t=0
= p(x), (47)

The equality (47) moreover suggests that to compute the Bergman projection of a poly-

nomial p, it suffices to show that

(Pαe
t·y)(x) :=

∫
Rn

Rα(x, y)et·y dµnα(y) = e
|t|2
4α R 1

2
(x, t), (48)

whence by differentiation under the integral sign

(Pαp)(x) =

∫
Rn

Rα(x, y)p(y) dµnα(y) =

∫
Rn

Rα(x, y)p(∇t)e
t·y∣∣

t=0
dµnα(y)

= p(∇t)

∫
Rn

Rα(x, y)et·ydµnα(y)
∣∣
t=0

= p(∇t)e
|t|2
4α R 1

2
(x, t)

∣∣
t=0
,

or, due to (46),

(Pαp)(x) = e
∆t
4αR 1

2
(x,∇t)p(t)

∣∣
t=0
.

If we introduce just another piece of notation, related to the well-known Pochhammer symbol

(a)k := a(a+ 1)(a+ 2) . . . (a+ k − 1) =
Γ(a+ k)

Γ(a)
,

for which obviously

(a)k = (aτa)
k1,

1

(a)k
=

(
1

a
τa

)k
1 ∀k ∈ N0 := N ∪ {0},

where τa is the translation operator of a by 1:

τaf(a) := f(a+ 1),

34



and the corresponding polynomials thereof, defined as expressions of the form

p(aτax)1 =
m∑
k=0

(a)k
k!

(x · ∇)kp(0), p

(
1

a
τax

)
1 =

m∑
k=0

1

(a)kk!
(x · ∇)kp(0),

we can in fact show the following

Lemma 1 (Harmonic Bergman projection formula). The Bergman projection of a polynomial

takes the form

(Pαp) (x) = e
∆y
4α
m e

x·∇yBC′− 1
4
|x|2∆yBC′

2

m p(y)
∣∣
y,γ,β=0

, m ≥ deg p,

where

B := (b+ β)τβ C ′ :=
1

b+ γ
τγ

and exm is the “truncated” exponential:

exm :=
m∑
k=0

xk

k!
.

This result is in turn used to prove the following theorem, which, along with certain results

on the asymptotic behaviour of a variety of kinds of hypergeometric functions that pop up

here an there (and a handful of auxiliary results that we do not mention here), is of crucial

importance for the proof of Theorems 9 and 10:

Theorem 11. Let pM be a polynomial of degree M . If x and z are non-collinear, then the

integral ∫
Rn

pM(y)Rα(x, y)Rα(z, y) dµnα(y) (49)

admits the following representation:∫
Rn

pM(y)Rα(x, y)Rα(z, y) dµnα(y)

= e
∆t
4α ex·∇tBC

′− 1
4
|x|2∆tBC′

2

e
αz·∇t( 1

α
−|x|2BC′2)B2C′2−α2|z|2

“
∆t
4 ( 1

α
−|x|2BC′2)

2
+∇t·x( 1

α
−|x|2BC′2)BC′

”
B2C′2

2

pM(t)

Φ2

(
b+ β

b+ γ b+ γ2

;
b+ β2 b+ β2

−
;αuz,x, αūz,x

)∣∣∣∣
t,β,β2,γ,γ2=0

. (50)

In case z = ξx, there is the representation∫
Rn

pM(y)Rα(x, y)Rα(z, y) dµnα(y)

= e
∆t
4α ex·∇tBC

′− 1
4
|x|2∆tBC′

2

eαξx·∇t(
1
α
−|x|2BC′2)B2C′2−

1
4
α2ξ2|x|2∆t( 1

α
−|x|2BC′2)

2
B2C′2

2

pM(t)

2F2

(
2b+ γ2 b+ β

b+ γ2 b+ γ
;αξ |x|2

)∣∣∣∣
t,β,β2,γ,γ2=0

,
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where uz,x = z · x+ i
√
|z|2 |x|2 − (z · x)2 and the operators B,B2, C

′, C ′2 are defined as

B = (b+ β)τβ, B2 = (b+ β2)τβ2 , C ′ =
1

b+ γ
τγ, C ′2 =

1

b+ γ2

τγ2 .

Here, Φ2 is a slightly generalized version of the Φ2 function introduced in (44) (and formally

denoted by the same symbol), this time defined for every x, y ∈ C by the formula

Φ2

(
a

c1 c2

;
b1 b2

−
;x, y

)
:=

∞∑
j,k=0

(a)j+k(b1)j(b2)k
(c1)j+k(c2)j+k

xjyk

j!k!
. (51)

For the remaining parts of the proof, we refer to [12].
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