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1 Historical background and preliminaries

1.1 Surfaces of constant astigmatism

Surfaces of constant astigmatism, i.e. surfaces characterized by the constancy
of the difference ρ2 − ρ1 between the principal radii of curvature ρ1, ρ2, were
already known by 19th century geometers. Although nameless at that time,
they are studied in works by Bianchi [6, 9], Lipschitz [33], von-Lilienthal [32],
Ribaucour [44] and Mannheim [35].

Most important results regarding constant astigmatism surfaces are un-
doubtedly due to Bianchi. In [6] he showed (see also [44]) that evolutes1 of
constant astigmatism surfaces are pseudospherical, i.e. with constant nega-
tive Gaussian curvature. In the same paper, he proved that involutes2 of
pseudospherical surfaces corresponding to parabolic geodesic3 net are of con-
stant astigmatism, see also [8, §136].

Apparently, Bianchi was the first to obtain surfaces of constant astigma-
tism explicitly, namely surfaces [6, eq. (30)] corresponding to Dini’s pseudo-
spherical helicoids (see, e.g., [45, §1.4.2] or [50, p. 183]). For pictures of the
surfaces, see Fig. 1.

A remarkable class of constant astigmatism surfaces was studied by Lips-
chitz [33], see Sect. 4, and its subclass was later investigated by von Lilienthal
[32]. Von Lilienthal surfaces coincide with involutes of Beltrami’s pseudo-
sphere, for pictures see Fig. 2 or [5, p. 14].

1Two evolutes (also called focal surfaces) of given surface r with unit normal n are
r̂r1 = r + ρ1n and r̂r2 = r + ρ2n, where ρ1, ρ2 are principal radii of curvature. In other
words, evolutes are formed by loci of the centres of curvature for all points of a given
surface

2Let r(X,Y ) be a surface parameterised by geodesics, i.e. the metric is of the form
dX2 +g(X,Y ) dY 2. A family of involutes of surface r(X,Y ) is given by r̃r = r+(a−X)rX ,
where a is arbitrary real constant.

3According to [10], geodesic coordinates (X,Y ) on a pseudospherical surface r(X,Y )
with Gaussian curvature K = −1/R2 are called parabolic if I = dX2 + e2X/R dY 2, elliptic
if I = dX2 +R2 sinh2(X/R) dY 2 and hyperbolic if I = dX2 + cosh2(X/R) dY 2.
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Figure 1: Dini’s pseudospherical surface (left) and its constant astigmatism
involute (right).

Figure 2: Von Lilienthal surfaces of constant astigmatism and their evolute,
the pseudosphere.

To our best knowledge, no result concerning constant astigmatism sur-
faces appears throughout the twentieth century. One can only speculate why
the topic fell into oblivion, however, it reemerged in 2009 in the work [5] con-
cerning the systematic search for integrable classes of Weingarten surfaces.
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In the paper, the surfaces were given a name and equation (5) was derived
for the first time.

1.2 The constant astigmatism equation

In this section we recall results from [5]. They form necessary background for
our approach in this thesis.

We consider surfaces immersed in Euclidean space under parameterisation
by the lines of curvature (also known as curvature coordinates). Hence, the
fundamental forms can be written as

I = u2 dx2 + v2 dy2 , II =
u2

ρ1

dx2 +
v2

ρ2

dy2 ,

III =
u2

ρ2
1

dx2 +
v2

ρ2
2

dy2 ,

(1)

where ρ1, ρ2 are the principal radii of curvature. The first two forms determine
the surface up to the rigid motions (Bonnet theorem).

Recall that a surface is said to be of constant astigmatism (CA) if the
difference ρ2−ρ1 between the principal radii of curvature is a nonzero constant
(if zero, then the surface is a part of the sphere). We assume the ambient
space to be scaled so that ρ2 − ρ1 = ±1.

Definition 1.2.1. A parameterisation by lines of curvature is said to be
adapted if

uv
( 1

ρ1

− 1

ρ2

)
= ±1 (2)

holds.

Adapted curvature coordinates are also geometric coordinates in the sense
of [18] with the arbitrary constant being normalised to ±1. Every constant
astigmatism (more generally, Weingarten) surface can be equipped with an
adapted parameterisation by lines of curvature, see [18, Prop. 5.6] or [5].
Henceforth we assume that x, y are adapted coordinates. Then, according
to [5], the nonzero coefficients of the three fundamental forms of a surface
of constant astigmatism can be expressed through a single variable z(x, y),
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namely

u =
z

1
2 (ln z − 2)

2
, v =

ln z

2z
1
2

,

ρ1 =
ln z − 2

2
, ρ2 =

ln z

2
.

(3)

Obviously, condition (2) is satisfied.
Let r(x, y) be the surface of constant astigmatism corresponding to z(x, y),

let n(x, y) denote the unit normal vector. Then r,n satisfy the Gauss–
Weingarten system

rxx =
(ln z)zx

2(ln z − 2)z
rx −

(ln z − 2)zzy
2 ln z

ry +
1

2
(ln z − 2)zn,

rxy =
(ln z)zy

2(ln z − 2)z
rx −

(ln z − 2)zzx
2 ln z

ry,

ryy =
(ln z)zx

2(ln z − 2)z3 rx −
(ln z − 2)zy

2z ln z
ry +

ln z

2z
n,

nx = − 2

ln z − 2
rx, ny = − 2

ln z
ry.

(4)

Note that e1 = rx/u, e2 = ry/v, and n = e1 × e2 constitute an orthonormal
frame.

Compatibility conditions of the Gauss–Weingarten system constitute the
Gauss–Mainardi–Codazzi system, which in our case reduces to the Gauss
equation alone, and coincides with the constant astigmatism equation (CAE)

zyy +
(1

z

)
xx

+ 2 = 0. (5)

Note that there is a nice geometric interpretation of the variable z, see Sect. 3
below.

For future reference, we single out the solutions

z = c21 − (y + c2)
2, z =

1

c21 − (x− c2)2 , (6)

where c1, c2 denote arbitrary real constants. They are easy to obtain as the
solutions independent of x or y, respectively. Following [5], we call them the
von Lilienthal solutions, since they correspond to aforementioned surfaces of
revolution studied by von Lilienthal [32], see Fig. 2.
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1.3 Symmetries of the CAE

For further reference, we also recall a list of symmetries of equation (5). Lie
symmetries are completely known, see [5]. They are the x-translation

Tx
a(x, y, z) = (x+ a, y, z),

the y-translation

Ty
b(x, y, z) = (x, y + b, z),

and the scaling

Sc(x, y, z) = (e−cx, ecy, e−2cz),

where a, b, c are real parameters. The known discrete symmetries are ex-
hausted by the x-reversalRx(x, y, z) = (−x, y, z), the y-reversalRy(x, y, z) =
(x,−y, z) and the involution (or duality)

I(x, y, z) =
(
y, x,

1

z

)
. (7)

To avoid possible misunderstanding, we stress that Tx,Ty,Rx,Ry should be
understood as single symbols, similarly to S, I. Otherwise said, the super-
scripts refer to the position in the triple (x, y, z).

Translations and reversals correspond to mere reparameterisations of the
constant astigmatism surfaces. The scaling symmetry takes a surface to a pa-
rallel surface, obtained when moving every point of the surface a constant
distance along the normal (offsetting). The involution swaps the orientation,
interchanges x and y, and makes a unit offsetting.

Obviously,

I ◦ I = id,

I ◦ Tx
a = Ty

a ◦ I, I ◦ Ty
a = Tx

a ◦ I,

Sc ◦ Tx
a = Tx

a/c ◦Sc, Sc ◦ Ty
b = Ty

cb ◦Sc,

Sc ◦ I = I ◦S1/c,

Rx ◦S−1 = Ry.

Higher order symmetries have been considered in [5] and [41]; they will
not be needed in this thesis.
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1.4 The sine-Gordon equation

In the similar way as constant astigmatism surfaces are related to the con-
stant astigmatism equation, pseudospherical surfaces are related to famous
sine-Gordon equation. Let us consider a pseudospherical surface r(ξ, η), where
the parameters ξ, η are both Chebyshev and asymptotic (which is always pos-
sible), i.e.,

I = dξ2 + 2 cosω dξ dη + dη2, II = 2 sinω dξ dη.

The position vector r(ξ, η) and the unit normal n(ξ, η) satisfy the Gauss–
Weingarten system

rξξ = ωξ(cotω)rξ − ωξ(cscω)rη,

rξη = (sinω)n,

rηη = ωη(cotω)rη − ωη(cscω)rξ,

nξ = (cotω)rξ − (cscω)rη,

nη = (cotω)rη − (cscω)rξ.

(8)

The compatibility conditions of the above system reduce to the sine-Gordon
equation

ωξη = sinω. (9)

The aforementioned geometric relationship between constant astigmatism
surfaces and pseudospherical surfaces (the latter being evolutes of the former)
induces a nonlocal transformation from the CAE to the sine-Gordon equation
and vice versa. Explicit formulas can be found in [5], ready to be applied to
the sine-Gordon solutions, which are known in abundance; see [2, 17, 40,
42] and references therein. However, the transformations change both the
dependent and independent variables, which makes them difficult to apply.

1.5 Bäcklund transformation for the sine-Gordon equa-
tion

The Bäcklund transformation [4], see also [8, 10], for the sine-Gordon equa-
tion (9) takes a solution ω and produces a new solution ω(λ), given by the

6



system(ω(λ) − ω
2

)
ξ

= λ sin
ω(λ) + ω

2
,

(ω(λ) + ω

2

)
η

=
1

λ
sin

ω(λ) − ω
2

,

(10)

λ being called a Bäcklund parameter. What is more, the superposition for-
mula [7, 10]

tan
ω(λ1λ2) − ω

4
=
λ1 + λ2

λ1 − λ2

tan
ω(λ1) − ω(λ2)

4
, (11)

see Fig. 3, allows us to obtain the solution ω(λ1λ2), the Bäcklund transforma-
tion of ω(λ1) with Bäcklund parameter λ2, by purely algebraic manipulations.

ω(λ1)

λ2

$$IIIIIIIII

ω(λ1)

λ1

;;wwwwwwwww

λ2

##GG
GG

GG
GG

G ω(λ1λ2)

ω(λ2)

λ1

::uuuuuuuuu

Figure 3: Nonlinear superposition for the sine-Gordon equation.

The Bäcklund transformation of corresponding pseudospherical surface is
also well known, see e.g. [45]. Let r be a pseudospherical surface corresponding
to a sine-Gordon solution ω(ξ, η), i.e. r(ξ, η), its unit normal n(ξ, η) and
ω(ξ, η) satisfy the Gauss-Weingarten system (8). A Bäcklund transformation
r(λ) of the surface r is

r(λ) = r +
2λ cscω

1 + λ2

[
sin
(ω − ω(λ)

2

)
rξ + sin

(ω + ω(λ)

2

)
rη

]
, (12)

where ω(λ) satisfies (10). Substituting λ = 1 into (12) one obtains a comple-
mentary pseudospherical surface

r(1) = r +
[
sin
(ω − ω(1)

2

)
rξ + sin

(ω + ω(1)

2

)
rη

]
cscω. (13)
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2 Construction of CAE solutions and CA sur-

faces

2.1 Construction of CAE solution from ω and ω(λ)

In [22] we introduced the method of finding a solution of the CAE corre-
sponding to given sine-Gordon solution ω and its Bäcklund transformation
ω(λ).

Proposition 2.1.1. Let ω(λ) be a general solution of system (10). Let

x
(λ)
ξ = λg(λ) sin

ω(λ) + ω

2
, x(λ)

η =
1

λ
g(λ) sin

ω(λ) − ω
2

,

y
(λ)
ξ =

λ

g(λ)
sin

ω(λ) + ω

2
, y(λ)

η = − 1

λg(λ)
sin

ω(λ) − ω
2

,

g
(λ)
ξ = g(λ)λ cos

ω(λ) + ω

2
, g(λ)

η = g(λ) 1

λ
cos

ω(λ) − ω
2

.

(14)

Expressing z(λ) = 1/g(λ)2 in terms of x(λ), y(λ), one obtains a solution z(x, y)
of the CAE.

The solution in question is given in terms of functions x(λ), y(λ), g(λ) which
will be called associated potentials in the sequel.

Moreover, according to [6], considering a dependence of ω(λ)(ξ, η) on an
integration constant K, potentials x(λ)(ξ, η) and g(λ)(ξ, η) can be obtained
by algebraic handling and differentiation with respect to K, namely

g(λ) =
dω(λ)

dK
, x(λ) = −2

d ln g(λ)

dK
. (15)

Nevertheless, computing y(λ)(ξ, η) requires integration of the second pair of
equations in the system (14).

Recall that potentials x(λ) and y(λ) are the adapted curvature coordinates
on corresponding surface of constant astigmatism.

8



2.2 Construction of CA surface from pseudospherical

surfaces r and r(1)

In [22] we observed that surfaces of constant astigmatism are easier to obtain
from a pair of complementary pseudospherical surfaces r and r(1) than from
a single pseudospherical surface (as considered in [5]).

Proposition 2.2.1. Let ω(1)(ξ, η) be a general solution of system (10) with
λ = 1 and let r(1) and r are related by (13). Then

ñn = r(1) − r (16)

is the unit normal of the corresponding constant astigmatism surface. The
constant astigmatism surface itself (having surfaces r and r(1) as evolutes) is
then given by

r̃r = r− ln g(1)ñn. (17)

2.3 Superposition formula for the CAE

It is natural to ask whether the superposition formula (11) has its analog on
the level of CAE solutions. The answer is positive as we showed in [22] and
further augmented in [25].

Let us slightly change the notation. Let ω[0] = ω̄ω [0] be a solution of the
sine-Gordon equation. Fix Bäcklund parameters λ1, . . . , λk+1 and, according
to the diagram

ω[0]
λ2 //

λ1

��

ω̄ω [1]
λ3 //

λ1

��

ω̄ω [2]

λ1

��

λ4 // ω̄ω [3]

λ1

��

λ5 // ω̄ω [4]

λ1

��

λ6 // · · ·

ω[1]
λ2 // ω[2]

λ3 // ω[3]
λ4 // ω[4]

λ5 // ω[5]
λ6 // · · ·,

(18)

denote

ω[k] = ω(λ1λ2...λk), ω̄ω [k] = ω(λ2λ3...λk+1). (19)

The diagram is nothing but an extension of that from Fig. 3. In this notation,
the superposition formula (11) turns out to be

tan
ω[j+2] − ω̄ω [j]

4
=
λ1 + λj+2

λ1 − λj+2

tan
ω[j+1] − ω̄ω [j+1]

4
.

9



Proposition 2.3.1. Let g[j], x[j], y[j] be associated potentials corresponding
to the pair ω̄ω [j−1], ω[j]. They satisfy recurrences

x[j+1] =
λj+1λ1

λ2
j+1 − λ2

1

x[j] −
2λj+1λ1 sin

ω̄ω [j] − ω[j]

2

λ2
j+1 + λ2

1 − 2λj+1λ1 cos
ω̄ω [j] − ω[j]

2

g[j]

,
y[j+1] =

λ2
j+1 − λ2

1

λj+1λ1

y[j] − 2

g[j]
sin

ω̄ω [j] − ω[j]

2
,

g[j+1] =
−λj+1λ1

λ2
j+1 + λ2

1 − 2λj+1λ1 cos
ω̄ω [j] − ω[j]

2

g[j].

(20)

The recurrences are easy to solve, see Sect. 7. Recall that z[k] = 1/g[k]2

expressed in terms of x[k] and y[k] is a solution of the CAE for all k.

Remark 2.3.1. To find a (k+1)-th solution (x[k+1], y[k+1], z[k+1]) of the CAE
one needs to know a k-th solution (x[k], y[k], z[k]), a Bäcklund parameter λk+1

and, additionally, corresponding sine-Gordon solutions ω[k] and ω̄ω [k]. On the
other hand, in the the case when λi = ±1 one can employ reciprocal transfor-
mations, see Sect. 5. They are immediately applicable to solutions of the con-
stant astigmatism equation with no apriori given sine-Gordon counterpart.
However, the computation of path-independent line integral is required.

3 Orthogonal equiareal patterns and slip line

fields

3.1 Orthogonal equiareal patterns

The geometric meaning of the variable z can be seen from the third funda-
mental form which (when substituting (3) into (1)) turns out to be simply

III = z dx2 +
1

z
dy2.

Since III = dn ·dn coincides with the first fundamental form of the Gaussian
sphere n(x, y), it follows that one obtains a rather special parameterisation

10



of the latter. Note that the same result was obtained by Bianchi [9, §375,
eq. (20)] in the context of pseudospherical congruences.

Definition 3.1.1. By an orthogonal equiareal pattern on a surface S we shall
mean a parameterisation x, y such that the corresponding first fundamental
form is

IS = z dx2 +
1

z
dy2, (21)

z being an arbitrary function of x, y.

The system of local coordinates (x, y) = (x1, x2) from the Def. 3.1.1 obvi-
ously satisfies g12 = 0, det g = 1. Hence, the area element is simply dx1∧dx2

and the area of the curvilinear rectangle ai ≤ xi ≤ bi, i = 1, 2, is equal
to (b1 − a1)(b2 − a2). It follows that the curvilinear rectangles formed by
“uniformly spaced” coordinate lines are of equal area, which explains the
terminology.

Example 3.1.1. The Archimedean projection. A simple example of an ortho-
gonal equiareal pattern on the sphere, that can be seen in the left part of
Fig. 4, is delivered by the well-known Archimedean projection of the cylin-
der (cos y, sin y, x) onto an inscribed sphere. In this case, (x, y) is sent to

(
√

1− x2 cos y,
√

1− x2 sin y, x) and we have

IArch =
dx2

1− x2 + (1− x2) dy2,

i.e., one reveals von Lilienthal solution z = 1/(1− x2), cf. (6).

Not only every constant astigmatism surface generates an orthogonal
equiareal parameterisation of the unit sphere; a converse statement is also
available.

Proposition 3.1.1. Let n(x, y), ‖n‖ = 1, be an orthogonal equiareal pattern
on the unit sphere S. Then z defined by formula (21) is a solution of the
constant astigmatism equation (5).

In the case of S being a plane, the notion of an orthogonal equiareal pat-
tern was introduced by Sadowski [47, 48] in the context of two-dimensional
plasticity. Choosing the vectors ∂x, ∂y along the principal stress directions
(i.e., eigenvectors of the stress tensor σij), Sadowski derived the equiareal
property from the equilibrium condition div σ = 0 and the Tresca yield con-
dition σ1

1 − σ2
2 = const.

11



Figure 4: The Archimedean equiareal parameterisation of the unit sphere
(left) and corresponding slip line field composed of loxodromes (right).

3.2 Slip line fields

Consider the decomposition of a stress σ on a unit sphere into a sum of the
normal stress σN and the shear stress σT . The lines along the maximal shear
stress direction are called slip lines and, as we showed in [22], have a constant
deviation of 1

4
π from the principal stress directions.

Definition 3.2.1. By a slip line field associated with the orthogonal equiareal
pattern (21) on a surface S we shall mean a parameterisation ξ, η such that
the angle between ∂x and ∂ξ as well as the angle between ∂y and ∂η is equal
to 1

4
π.

Note that slip line field also forms an orthogonal net. What is more,
it is not a pure coincidence that the symbols ξ, η from Def. 3.2.1 occur in
sine-Gordon equation (9).

Proposition 3.2.1. Let ω(1)(ξ, η) be a general solution of system (10) with
λ = 1 and let (x, y, z) = (x(1)(ξ, η), y(1)(ξ, η), 1/g(1)(ξ, η)) is formed by general
solutions of system (14) with λ = 1. Let ñn be given by (16). Then ñn(x, y) is an
orthogonal equiareal pattern on the unit sphere while ñn(ξ, η) is the associated
slip line field.
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The meaning of the previous proposition is illustrated in Fig. 5.

Figure 5: Gaussian map of a constant astigmatism surface.

Example 3.2.1. Continuing Example 3.1.1, we easily see that the corre-
sponding orthogonal net of slip lines is, by definition, formed by the ±45◦

loxodromes (lines of constant bearing); see the right part of Fig. 4 or model
No. 249 in the Göttingen collection [46]. Also compare with Zelin’s super-
plastic sheet stretched with a spherical punch [56, Fig. 5b]. Note that corre-

13



sponding sine-Gordon solution is ω(1) = 4 arctan[exp(ξ+η+c)], the Bäcklund
transformation of zero solution ω = 0, see Sect. 7.

3.3 Geometrical admissibility of solutions

The next definition is motivated by formula (21). In order to yield metric,
z must be real and positive.

Definition 3.3.1. We shall say that a solution z is geometrically admissible,
if there exists a nonempty open subset D ⊆ R2 such that

z(x, y) > 0

for all (x, y) ∈ D.

The positivity of z is also necessary and sufficient for the existence of
the corresponding constant astigmatism surface. The necessity follows from
formula (21) for the Gaussian image, the sufficiency follows from [5, Eq. (26)].

4 Lipschitz solutions of the CAE

In this section we summarize results from the work [23].

4.1 Lipschitz surfaces from 1887

In 1887 Lipschitz in his work [33] presented a class of surfaces of constant
astigmatism in terms of spherical coordinates of the Gaussian image n =
(cosφ sin θ, sinφ sin θ, cos θ). Lipschitz defines a position angle (Stellungswin-
kel) to be the angle σ between nθ and nx. The Lipschitz class is specified by
letting σ depend solely on the latitude θ.4

The surfaces are given by [33, Eq. 14] and as a special case they contain
von Lilienthal surfaces of revolution, see Fig. 2. A few particular Lipschitz
surfaces are plotted in Fig. 6.

4Let us quote Lipschitz’s original words: “Ich suche jetzt die Oberflächen zu ermitteln,
für welche die Differenz (ρ2 − ρ1) constant ist, ferner der Stellungswinkel σ nicht von der
Variable φ und nur von der Variable θ abhängt.”

14



Figure 6: Lipschitz surfaces of constant astigmatism. In the left, one can
clearly identify the involute of Dini’s surface, cf. Fig. 1.

4.2 Solutions of the CAE corresponding to Lipschitz
surfaces

It is not easy to see what are the corresponding solutions z(x, y) and ω(ξ, η).
However, since the position angle σ depends solely on θ, we are able to re-
derive the Lipschitz class in terms of the orthogonal equiareal patterns and
compute the corresponding solutions z(x, y) of the CAE. They will be called
Lipschitz solutions. A generic Lipschitz solution is two-valued and depends
on four real parameters.

Theorem 4.2.1. The general Lipschitz solution of the constant astigmatism
equation (5) depends on four real parameters h11, h10, h01, h00 and is a nonzero

15



root of the quadratic polynomial

h2
yz

2 + (h2 − 1)z + h2
x, (22)

where

h = h11xy + h10x+ h01y + h00,

hy = h11x+ h01, hx = h11y + h10,

under the condition that h is not a constant (i.e., at least one of the coeffi-
cients h11, h10, h01 is not zero).

Remark 4.2.1. In terms of a = h11 and b = h11h00 − h10h01, the polyno-
mial (22) becomes

h2
yz

2 + (h2 − 1)z +
(ah− b)2

h2
y

and its roots are

z =
1− h2 ±

√
(1− h2)2 − 4(ah− b)2

2h2
y

, (23)

whenever hy 6= 0. Formula (23) gives all solutions except the x-dependent
von Lilienthal solution (6).

A thorough examination of (23) yields a description of geometrically ad-
missible Lipschitz solutions.

Proposition 4.2.1. The Lipschitz solution z is geometrically admissible if
and only if either |b| < |a| or |b| < 1

2
(a2 +1), |a| < 1 (the grey area in Fig. 7).

It also turns out that Lipschitz solutions exactly match the Lie symmetry
invariant solutions.

Proposition 4.2.2. The class of Lipschitz solutions (22) coincides with the
class of solutions invariant under linear combinations of the Lie symmetries
Tx,Ty,S.
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Figure 7: The domain of positivity of z (grey) in a neighbourhood of a = 0,
b = 0.

4.3 Orthogonal equiareal patterns

The orthogonal equiareal patterns corresponding to Lipschitz surfaces are
also available.

Proposition 4.3.1. Denote

Ea,b =

∫ h

h0

√
(1− χ2)2 − 4(aχ− b)2

2(aχ− b)(1− χ2)
dχ, (24)

choosing the lower integration limit h0 so that Ea,b is real. Then the orthogo-
nal equiareal pattern corresponding to the general Lipschitz solution is given
by the unit vector n = (cosφ sin θ, sinφ sin θ, cos θ), where θ = arccosh and

φ =
1

2a
ln
hx
hy
± Ea,b if a 6= 0,

φ =
h01y − h10x+ h00

2b
± E0,b if a = 0, b 6= 0.

(25)

A few particular examples are examined in Subsect. 4.5.
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4.4 Sine-Gordon solutions and slip lines

In the Subsect. 4.2 we employed the Lipschitz condition: the angle σ between
nθ and nx on the unit sphere depended solely on θ. Considering the fact that
the angle between nx and nξ is constant (equal to π/4), it is clear that in the
Lipschitz case the angle σ′ between nθ and nξ depends solely on θ as well.

Proposition 4.4.1. Solutions of the sine-Gordon equation (9) corresponding
to Lipschitz solutions of the CAE satisfies

ωξ = kωη,

k being a constant, which means that the solutions are of the form ω(kξ +
η + const).

Thus, ω is nothing but the well-known travelling wave solution (see,
e.g., [28, Sect. 3]) also known as a “fluxon chain”. The analytic expressions for
ω through the Jacobi elliptic functions are recalled in Sect. 8, Remark 8.1.1.

4.5 Examples of Lipschitz solutions

The von Lilienthal case of a = b = 0 in (23) corresponds to the global
Archimedean parameterisation of the sphere except the poles, see Exam-
ple 3.1.1.

More examples are easy to construct if the integral (24) can be expressed
in terms of elementary functions. This is the case when either |b| = |a|,
which is admissible if and only if |a| < 1, or |b| = 1

2
(1 + a2), which is never

admissible.

Example 4.5.1. Let 0 < |b| = |a| < 1, h10 = h01 = 0 and h00 = 1. Then the
solution (23) is of the form

z = −axy(axy + 2)±
√
y2a2x2(axy + 2)2 − 4(b− a− a2xy)2

2a2x2
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and the corresponding orthogonal equiareal pattern can be written, using
Prop. 4.3.1, as (cosφ sin θ, sinφ sin θ, cos θ), where θ = arccos(axy + 1) and

φ = ∓
√

1− a2

2a
ln

1− 2a2 ± h+
√

1− a2
√

(h∓ 1)2 − 4(a2 ∓ h)

h∓ 1

− lnx

a
+

ln[h2 − 1 + (h∓ 1)
√

(h∓ 1)2 − 4(a2 ∓ h) ]

2a

± 1

2
arctan

√
(h± 1)2 − 4a2

2a
.

In the particular case when a = b = 1/4 we have

z = −y
(xy + 8±

√
x2y2 + 16xy + 60)

2x

and

φ = 2 ln
y

x
± 1

2
arctan

1√
4x2 + 8x+ 3

∓ 2 ln(2 + 2x+
√

4x2 + 8x+ 3)

±
√

15

2
arctanh

7 + 8x√
15(4x2 + 8x+ 3)

,

see the left part of Fig. 8. On the right side of the same figure one can see
the solution of the CAE and orthogonal equiareal pattern obtained when
a = b = 1/10, h10 = h01 = 0 and h00 = 1.

Let us note that there is a striking similarity between the spirals in Fig. 8
and spiral fractures actually observed; see, e.g., [52, 53].

Example 4.5.2. Let b = 0, a 6= 0. This is another case when the in-
tegral Ea,b can be taken in terms of elementary functions. The pattern is
tangent/perpendicular to the equator. The belt spans the parallels cos θ =

±
√
a2 + 1 ∓ a, see Fig. 9(a).

Example 4.5.3. Let a = 0, b 6= 0, |b| < 1
2
. The pattern has an obvious

rotational symmetry; see Figure 9(b). The belt spans the parallels cos θ =
±
√

1− 2b .
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(a) (b)

Figure 8: Spherical orthogonal equiareal patterns corresponding to a = b;
(a) a = 1/4, (b) a = 1/10.

(a) (b)

Figure 9: Orthogonal equiareal patterns on the sphere (a) a = 1/2, b = 0,
(b) a = 0, b = 1/3.
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Example 4.5.4. We finish this section providing a picture of slip-line field
corresponding to one of the Lipschitz surfaces, see Fig. 10; both branches of
a double-valued field are clearly identifiable.

Figure 10: The slip line field on the sphere corresponding to one of the Lip-
schitz solutions

5 A reciprocal transformation for the CAE

In this section we summarize results from the work [24], where we look for
another solution-generating tool that would not require solving differential
equations. We introduce two (interrelated) auto-transformations XA and YB
that, in geometric terms, correspond to taking the involute of the evolute.
Each generates a three-parametric family of solutions from a single seed, but
when applied in combination, they have an unlimited generating power in
terms of the number of arbitrary parameters in the solution.

The transformations XA and YB are Bäcklund transformations sensu
Bäcklund [4, 19], since each is determined by four relations of no more than
the first order (although modern usage often sees this term as implying that
independent variables are preserved, the original meaning is as stated). We
call XA and YB reciprocal transformations since, up to point transformations,
XA and YB are equivalent to X and Y satisfying

X 2 = Y2 = id,

which is a property characteristic of reciprocal transformations [29].
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Transformations XA and YB only depend on the computation of path-
independent line integrals, which puts lower demands on the seeds. The sine-
Gordon equation is bypassed and the transformations are immediately appli-
cable to solutions of the constant astigmatism equation with no apriori given
sine-Gordon counterpart, such as the Lipschitz solution from the previous
section. If the seeds are given in parametric form, then so are the generated
solutions.

5.1 First order conservation laws

Firstly, recall the list of symmetries of the CAE from Subsect. 1.3.
We shall also need the six first-order conservation laws of equation (5),

which are easy to compute following, e.g., [11]. The associated six potentials
χ, µ, ζ, τ, ξ, η satisfy

χx = zy + y, χy =
zx
z2 − x,

µx = xzy, µy = x
zx
z2 +

1

z
− x2,

ζx = −yzy + z − y2, ζy = −yzx
z2 ,

τx = xyzy − xz + 1
2
xy2, τy = xy

zx
z2 +

y

z
− 1

2
x2y

(26)

and

ξx =

√
(zx + zzy)

2 + 4z3

4z
, ξy =

√
(zx + zzy)

2 + 4z3

4z2 ,

ηx =

√
(zx − zzy)2 + 4z3

4z
, ηy = −

√
(zx − zzy)2 + 4z3

4z2 .

(27)

Equations (26), (27) are compatible by virtue of equation (5). Potentials ξ, η
correspond to the independent variables of the sine-Gordon equation (9),
see [5, eq. (29)]. Assuming z positive in accordance to its geometrical meaning
(see Def. 3.3.1), the radicands in (27) are positive as well. On the other hand,
Manganaro and Pavlov [34] considered the class of solutions such that one
of the two radicands is zero.

The involution I acts on the potentials as follows: µ←→ ζ, while χ −→ −χ,
τ −→ −τ , ξ ←→ ξ, and η ←→ −η.
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5.2 A geometric construction

Reciprocal transformations results from a construction based on this idea:
We start with a constant astigmatism surface r, construct its pseudospherical
image r̂r, then reconstruct the full preimage r̃r, together with a new solution
of the CAE, reflecting the freedom of choice of the parabolic geodesic system
on r̂r.

Let z(x, y) be a solution of the CAE. The corresponding surface r(x, y)
of constant astigmatism and its unit normal n(x, y) satisfy the Gauss-Wein-
garten system (4), which is compatible as a consequence of equation (5).

The family of involutes r̃r we look for is given by

r̃r = r +
(x2z ln z

x2z + 1
+
x2z − 1

x2z + 1
(ln(x2z + 1) + a)

)
n

+ 2x
2a− 2 ln(x2z + 1) + ln z

(x2z + 1)(2− ln z)
rx ,

(28)

where a is an arbitrary constant. The corresponding unit normal is

ñn =
x2z − 1

x2z + 1
n +

4x

(x2z + 1)(2− ln z)
rx . (29)

A routine computation shows that the surface r̃r(x, y) has a constant astig-
matism.

However, one more step is required in order to find the corresponding
solution of the CAE. Namely, we have to find the adapted curvature coordi-
nates x′, y′ for the involute. They are

x′ = b · xz

x2z + 1
+ c2, y′ = ±1

b
µ+ c3,

where µ has been introduced in (26) and b, ci are constants. Finally,

z′ =
1

b2
· (x2z + 1)2

z
.

Setting all integration constants ci to zero, b to 1, and choosing the ‘+’
sign lead us to the following definition of transformations X ,Y .
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Definition 5.2.1. Let us define a transformation X (x, y, z) = (x′, y′, z′) by
formulas

x′ =
xz

x2z + 1
, y′ = µ, z′ =

(x2z + 1)2

z
. (30)

Using Y = I◦X ◦I, we define another transformation Y(x, y, z) = (x∗, y∗, z∗)
by formulas

x∗ = ζ, y∗ =
y

y2 + z
, z∗ =

z

(y2 + z)2 . (31)

Proposition 5.2.1. Let z(x, y) be a solution of the constant astigmatism
equation (5), ζ, µ the corresponding potentials (26). Let X (x, y, z) = (x′, y′, z′)
and Y(x, y, z) = (x∗, y∗, z∗) be determined by (30) and (31). Then z′(x′, y′)
and z∗(x∗, y∗) are solutions of the constant astigmatism equation (5) as well.

Remark 5.2.1. Note that µ and ζ are potentials defined in (26). Therefore,
they are unique up to an integration constant, which is not to be neglected,
because it represents a parameter in the solution.

5.3 The reciprocal transformations and their proper-
ties

Proposition 5.3.1. Under a suitable choice of integration constants, X◦X =
id and Y ◦ Y = id.

Because of this property, X and Y are called reciprocal transformations,
although they are slightly more general than the common reciprocal trans-
formations encountered in the literature, e.g., [29] and [45].

Remark 5.3.1. The transformation X admits a restriction to the variables
x, z and then

x′2z′ = x2z, (x′2 + 1/z′)(x2 + 1/z) = 1,

easy to identify with the circle inversion in the (x, z−1/2)-subspace. Similarly,
Y admits a restriction to the variables y, z, and then

y′2/z′ = y2/z, (y′2 + z′)(y2 + z) = 1.

In this case, we obtain the circle inversion in the (y, z1/2)-subspace.
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The following identities are obvious:

X ◦ I = I ◦ Y ,
X ◦Sc = S1/c ◦ X , Y ◦Sc = S1/c ◦ Y

Slightly abusing the notation, we have also

X ◦ Ty
b = X = Ty

b ◦ X ,
Y ◦ Tx

a = Y = Tx
a ◦ Y .

There is no similar identity for X ◦ Tx
a and Y ◦ Ty

b . Instead, X ,Tx
a generate

a three-parameter group, and so do Y ,Ty
b .

Proposition 5.3.2. Let z(x, y) be a solution of the constant astigmatism
equation (5), χ, µ, ζ the corresponding potentials (26), and

A =

(
a11 a12

a21 a22

)
(32)

a real matrix such that detA = ±1. Let XA(x, y, z) = (x′A, y
′
A, z

′
A) and

YA(x, y, z) = (x∗A, y
∗
A, z

∗
A), where

x′A =
(a11 + a12x)(a21 + a22x)z + a12a22

(a11 + a12x)2z + a2
12

,

±y′A = a2
12µ+ a11a12χ− a11y(a11 + a12x),

z′A =
((a11 + a12x)2z + a2

12)
2

z

and

±x∗A = a2
12ζ − a11a12χ− a11x(a11 + a12y),

y∗A =
(a11 + a12y)(a21 + a22y) + a12a22z

(a11 + a12y)2 + a2
12z

,

z∗A =
z

((a11 + a12y)2 + a2
12z)2

Then z′A(x′A, y
′
A) and z∗A(x∗A, y

∗
A) are solutions of the constant astigmatism

equation (5) as well. The corresponding surfaces (28) exhaust all constant
astigmatism surfaces sharing one of the evolutes with the seed surface r.
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The Lie symmetries established in Subsect. 1.3 correspond to XA accor-
ding to the following table:

Lie symmetry Tx
a Sc X

matrix A

(
i 0

ai i

) (√
c 0

0 1/
√
c

) (
0 1

1 0

)
.

Recall that the translation Ty
a is due to the non-uniqueness of µ; see Re-

mark 5.2.1. Otherwise said, Ty
a corresponds to the unit matrix.

Proposition 5.3.3. In the case when a12 = 0 the transformations reduce to
local symmetries

XA =

{
Tx
a21/a11

◦S−a2
11

if detA = −1,
Tx
a21/a11

◦ Ry ◦S−a2
11

if detA = +1,

YA =

{
Ty
a21/a11

◦S−1/a2
11

if detA = −1,

Ty
a21/a11

◦ Rx ◦S−1/a2
11

if detA = +1.

Proposition 5.3.4. We have

XB ◦ XA = XBA, YB ◦ YA = YBA

for any two 2× 2 matrices A,B such that |detA| = |detB| = 1.

It follows that transformations XA form a three-parameter group, and
similarly for the transformations YA.

5.4 Relation to the sine-Gordon equation

Let us discuss the reciprocal transformation in terms of the sine-Gordon
solutions. It is closely related to the Bäcklund relation B(λ), given by the
system (10). It follows that, on the level of sine-Gordon solutions, alternate
repeating of transformations XA and YB corresponds to alternate repeating
the Bäcklund transformation with Bäcklund parameter λ = ±1 according to
a commutative diagram

•
XA

//

F1 ��@
@@

@@
@@

•

F1��~~
~~

~~
~ YB

//

F2 ��@
@@

@@
@@

•

F2��~~
~~

~~
~ XA

//

F1 ��@
@@

@@
@@

•

F1��~~
~~

~~
~ YB

//

F2 ��@
@@

@@
@@

•

F2��~~
~~

~~
~

F1 ��@
@@

@@
@@

•
B(1)

// •
B(−1)

// •
B(1)

// •
B(−1)

// •
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easily extensible to the left or to the right. In the diagram, the mappings
Fi(x, y, z) = (ξ, η, ωi) from the CAE to the sine-Gordon equation are so called
focal mappings. They map solutions z(x, y) of the CAE to two complementary
sine-Gordon solutions ω1(ξ, η), ω2(ξ, η) given by formulas [24, p. 12]

ω1 = arctan
4z3/2zx

z2
x − 4z3 − z2z2

y

and ω2 = arctan
4z5/2zy

z2
x + 4z3 − z2z2

y

.

5.5 Transformation of orthogonal equiareal patterns and
constant astigmatism surfaces

The Gaussian image, ñn, of the transformed surface is given by formula (29). It
is easily checked that the first fundamental form of ñn in terms of coordinates
x′, y′ defined by (30) is

Iñn = z′(dx′)2 +
1

z′
(dy′)2

and therefore generates a new orthogonal equiareal pattern on the trans-
formed surface’s Gaussian sphere.

What is the relationship between the initial and the transformed pattern?
Let ψ denote the angle between n and ñn. Then

ñn = cosψ n + sinψ
nx√
z
,

where nx/
√
z is the unit vector codirectional with nx.

The vectors tangent to the lines y′ = const and x′ = const at the point
ñn(x, y) are

ñnx′ =
x2z − 1

z
nx − 2xn, ñny′ = − z

x2z + 1
ny.

Consequently, n,nx, ñn and ñnx′ lie in one and the same plane, while ny and
ñny′ are orthogonal to it. The angle between ñnx′ and nx is ψ.

The transformed orthogonal equiareal pattern can be constructed in the
following way: Rotate the vector n by angle ψ in the plane spanned by n and
nx. One of the new tangent vectors, ñnx′ , lies in the above-mentioned plane
while the second one, ñny′ , is orthogonal to it. Figure 11 provides a schematic
picture of the construction.

27



ñ

n

ψ
2

ψ
2

1
x
√
z

1
x
√
z

= 1
x′
√
z′

Figure 11: The transformation of an orthogonal equiareal pattern. Intersec-
tion of the Gaussian sphere with the plane containing n,nx, ñn, ñnx′ .

Similarly, formula (28), which describes the reciprocal transformation in
terms of constant astigmatism surfaces, can be rewritten simply as

r̃r = r + (ρ2 − ρ′2 cosψ) n− ρ′2 sinψ e , (33)

where ρ2 was established in (3), ρ′2 (one of the transformed surface’s radii of
curvature) is given by

ρ′2 = ln

√
z

x2z + 1
+ a

and e = −rx/u is a unit vector codirectional or contradirectional (depending
on the value of z) with rx. Here a denotes the same constant as in (28).

5.6 Examples

Example 5.6.1. Let us apply the transformations X and Y to the von
Lilienthal solution (cf. (6))

z = b2 − y2,

where b is a constant.
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Using (30), we obtain X (x, y, z) = (x′, y′, z′), where

x′ =
x(b2 − y2)

x2(b2 − y2) + 1
,

y′ = µ =
1

b
arctanh

(y
b

)
− x2y + c1 ,

z′ =
(x2(b2 − y2) + 1)2

b2 − y2 ,

(34)

c1 being the integration constant. Here µ has been expressed as a line inte-
gral according to formula (26). Apparently, z′(x′, y′) is a substantially new
solution of the CAE.

Similarly, using (31), we obtain Y(x, y, z) = (x∗, y∗, z∗), where

x∗ = b2x+ c2 , y∗ =
y

b2
, z∗ =

b2 − y2

b4
. (35)

However, z∗ = −y∗2 +1/b2 and, thus, we obtained just another von Lilienthal
solution.

Remark 5.6.1. Examples in this section demonstrate that reciprocal trans-
formations inevitably produce solutions in parametric form. While incon-
venient, this is not a serious obstacle. Both iteration of the procedure and
construction of the constant astigmatism surface or the orthogonal equiareal
pattern are possible. However, it is not straightforward to see whether two
solutions coincide up to a reparameterisation.

Example 5.6.2. Continuing Example 5.6.1, we provide a picture of the
surface of constant astigmatism generated from the von Lilienthal seed. It is
given by formula

r̃r1 = γ(b, x, y){2b sin(bx)− [x2(b2 − y2)− 1] cos(bx)},
r̃r2 = −γ(b, x, y){2b cos(bx) + [x2(b2 − y2)− 1] sin(bx)},

r̃r3 =
x2(b2 − y2)− 1

x2(b2 − y2) + 1
y ln[x2(b2 − y2) + 1]

+
b+ y

2b
· x

2(b− y)2 + 1

x2(b2 − y2) + 1
y ln(b2 − y2)− ln(b− y)− y

b
,
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where

γ(b, x, y) =

√
b2 − y2

2b
· x2(b2 − y2) + 1

2 ln[x2(b2 − y2) + 1]− ln(b2 − y2) + 1
.

Obviously, r̃r is real only if −b < y < b. A part of the surface is shown in
Figure 12 under the parameterisation by x, y. To parameterise the surface
by lines of curvature, one would have to express x, y in terms of x′, y′ from
formula (34).

Figure 12: A transformed von Lilienthal surface.

Example 5.6.3. Continuing previous example we describe the transforma-
tion of the corresponding orthogonal equiareal pattern. The von Lilienthal
solution z = b2−y2 generates the Archimedean projection (see Example 3.1.1)

IArch = (b2 − y2) dx2 +
1

b2 − y2 dy2.
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The Gaussian image of the transformed surface is

ñn1 =

√
b2 − y2

b
· (x2(b2 − y2)− 1) cos(bx)− 2xb sin(bx)

x2(b2 − y2) + 1
,

ñn2 =

√
b2 − y2

b
· (x2(b2 − y2)− 1) sin(bx) + 2xb cos(bx)

x2(b2 − y2) + 1
,

ñn3 = −y
b
· x

2(b2 − y2)− 1

x2(b2 − y2) + 1
.

(36)

To express the X -transformed orthogonal equiareal pattern explicitly, one
needs to invert the transformation (x, y)↔ (x′, y′), where x′, y′ are given by
formula (34). The X -transformed orthogonal equiareal pattern ñn ′(x′, y′) can
be seen in the right part of Figure 13.

Figure 13: A part of Archimedean projection (left) and a part of its X -
transformed pattern (right) connected by great circles’ arcs.
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6 Nonlocal conservation laws of the CAE

This section is devoted to summarizing results from the work [26].
Potentials ζ, µ from (26) are images of x, y under the reciprocal transfor-

mations Y ,X , respectively; see formulas (30), (31). Applying X to ζ and Y
to µ, we obtain new nonlocal potentials and the process can be continued
indefinitely. It is then natural to ask what is the minimal set of potentials
closed under the action of X and Y .

6.1 Conservation laws

Let E be a system of partial differential equations in two independent vari-
ables x, y. A conservation law is a 1-form f dx + g dy such that fy − gx = 0
as a consequence of the system E . A potential, say φ, corresponding to this
conservation law is a variable which formally satisfies the compatible system
φy = f , φx = g.

Let g be a matrix Lie algebra. A g-valued zero curvature representa-
tion [55] of the system E is a 1-parametric family g-valued forms α(λ) =
A(λ) dx + B(λ) dy such that Ay − Bx + [A,B] = 0 as a consequence of the
system E .

Let Q be an arbitrary matrix (called a gauge matrix) belonging to the
associated Lie group G. The gauge transformation [55] with respect to Q
sends α = A dx+B dy to Qα = QA dx+ QB dy, where

QA = QxQ
−1 +QAQ−1, QB = QyQ

−1 +QBQ−1. (37)

We also say that QA,QB are gauge equivalent to A,B.
Let us explain the procedure to generate conservation laws. Undoubtedly,

the shortest way to conservation laws is from a zero curvature representation
that vanishes at some value λ0 of λ. Without loss of generality we assume
that λ0 = 0, i.e., A(0) = B(0) = 0. Consider the associated compatible linear
system [55] (or a differential covering [11, 30])

Φx = AΦ, Φy = BΦ, (38)

where Φ is a column vector. Expanding Φ into the formal power series

Φ =
∞∑
i=0

Φiλ
i
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around zero and inserting into (38), we obtain compatible equations

Φn,x =
n∑
i=1

AiΦn−i, Φn,y =
n∑
i=1

BiΦn−i, n ≥ 0, (39)

where Ai, Bi are the coefficients of the Taylor expansion of A,B around
λ = 0. Here we start from i = 1 since A0 = B0 = 0. By formulas (39), each
of the derivatives Φn,x,Φn,y is explicitly expressed in terms of Φ0, . . . ,Φn−1.
Moreover, Φ0,x = Φ0,y = 0, meaning that Φ0 is a constant vector. Choosing
Φ0 suitably, we can subsequently use equations (39) to express the deriva-
tives Φn,x,Φn,y in terms of the previously determined potentials Φi, i < n,
obtaining what may be called a hierarchy of vectorial potentials determined
by Φ0 = const 6= 0 and

Φ1,x = A1Φ0, Φ1,y = B1Φ0,

Φ2,x = A1Φ1 + A2Φ0, Φ2,y = B1Φ1 +B2Φ0,

Φ3,x = A1Φ2 + A2Φ1 + A3Φ0, Φ3,y = B1Φ2 +B2Φ1 +B3Φ0,
...

The 1-forms

n∑
i=1

AiΦn−i dx+
n∑
i=1

BiΦn−i dy

then constitute a hierarchy of vectorial conservation laws, linear in the poten-
tials Φi. Their components are the scalar conservation laws sought. They are
termed ‘nonlocal’ since they depend on the potentials. The whole hierarchy
of potentials is also a special abelian covering [11].

As is well known, linearly independent conservation laws can have func-
tionally dependent potentials; cf. the discussion of local or potential depen-
dence in [43].

6.2 The zero curvature representation

From now on, we deal with the constant astigmatism equation (5).
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The zero curvature representation α = A(λ) dx + B(λ) dy satisfying the
assumption A(0) = B(0) = 0 is

A(λ) =


λ(λ− 2)K1

2(λ− 1)
− λ2zL1

2(λ− 1)

λ2z

4(λ− 1)

λ(λ− 2)K2

2(λ− 1)
− λ2zL2

2(λ− 1)
−λ(λ− 2)K1

2(λ− 1)
+

λ2zL1

2(λ− 1)

,

B(λ) =


λ(λ− 2)L1

2(λ− 1)
− λ2K1

2(λ− 1)z
−λ(λ− 2)

4(λ− 1)

λ(λ− 2)L2

2(λ− 1)
− λ2K2

2(λ− 1)z
−λ(λ− 2)L1

2(λ− 1)
+

λ2K1

2(λ− 1)z

,
(40)

where

K1 = −zy
4
, L1 = − zx

4z2 +
x

2
,

K2 = −xzy
2
, L2 = −xzx

2z2 −
1

2z
+
x2

2
.

(41)

Thus, we can derive a double hierarchy of nonlocal conservation laws by
expansion of a 2-component vector Φ satisfying system (38), i.e.,

Φx = AΦ, Φy = BΦ. (42)

Before doing that, consider the transformation properties of these hierar-
chies under local and nonlocal symmetries. As the initial step we transform
the zero curvature representation itself.

To start with, the CAE is invariant under the duality (7), in this section
denoted by

x̄x = y, ȳy = x, z̄z =
1

z
.

By applying duality to the zero curvature representation A dx + B dy, we

obtain
–
AA dx̄x+

–
BB dȳy =

–
BB dx+

–
AA dy, where

–
AA,

–
BB result from A,B by replacing

Ki, Li with

–
KK 1 =

zx
4z2 , L̄L1 =

zy
4

+
y

2
,

–
KK 2 =

yzx
2z2 , L̄L2 =

yzy
2
− z

2
+
y2

2
.

(43)
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Thus, the dual conservation laws will be derived by expansion of
–
ΦΦ satisfying

the system

–
ΦΦx =

–
BB

–
ΦΦ,

–
ΦΦy =

–
AA

–
ΦΦ. (44)

Furthermore, the CAE is invariant under the reciprocal transformations
X (x, y, z) = (x̃x, ỹy , z̃z) and Y(x, y, z) = (x∗, y∗, z∗), see Def. 5.2.1 from the
previous section. Since X is related to Y by the duality (7), we shall focus
on one of them, namely X .

The image of the zero curvature representation A dx + B dy under X is
A′ dx′ +B′ dy′ = ÃA dx+ B̃B dy, where

ÃA(λ) =

−
λ(λ− 2)K1

2(λ− 1)
+

λ2zL1

2(λ− 1)

λ(λ− 2)K2

2(λ− 1)
− λ2zL2

2(λ− 1)

λ2z

4(λ− 1)

λ(λ− 2)K1

2(λ− 1)
− λ2zL1

2(λ− 1)

,

B̃B (λ) =

−
λ(λ− 2)L1

2(λ− 1)
+

λ2K1

2(λ− 1)z

λ(λ− 2)L2

2(λ− 1)
− λ2K2

2(λ− 1)z

−λ(λ− 2)

4(λ− 1)

λ(λ− 2)L1

2(λ− 1)
− λ2K1

2(λ− 1)z

,
with Ki, Li being given by formulas (41). Thus, the reciprocal conservation
laws will be derived by expansion of Φ′ satisfying the system

Φ′x = ÃAΦ′, Φ′y = B̃BΦ′. (45)

Finally, reciprocal dual conservation laws are derived from
–
AA ′ dx̄x ′+

–
BB ′ dȳy ′.

6.3 The hierarchies

Denote

Φ =

(
u

v

)
,

–
ΦΦ =

(
ūu

v̄v

)
, Φ′ =

(
u′

v′

)
,

–
ΦΦ ′ =

(
ūu ′

v̄v ′

)
the vectors generating ordinary, dual, reciprocal, and reciprocal dual hierar-
chy of nonlocal conservation laws, respectively.
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Construction 1. Denote

u0 = 1, v0 = 0,

and define potentials un, vn by induction

un,x = K1un−1 +
1

2
(K1 + zL1)

n−2∑
i=0

ui −
1

4
z

n−2∑
i=0

vi,

un,y = L1un−1 −
1

2
vn−1 +

1

2

(
L1 +

K1

z

) n−2∑
i=0

ui −
1

4

n−2∑
i=0

vi,

vn,x = K2un−1 −K1vn−1 +
1

2
(K2 + zL2)

n−2∑
i=0

ui −
1

2
(K1 + zL1)

n−2∑
i=0

vi,

vn,y = L2un−1 − L1vn−1 +
1

2

(
L2 +

K2

z

) n−2∑
i=0

ui −
1

2

(
L1 +

K1

z

) n−2∑
i=0

vi,

(46)

for all n > 0, with K1, K2, L1, L2 being as introduced by formulas (41) above.

By construction, ui, vi are potentials of nonlocal conservation laws of the
constant astigmatism equation. Observe that u1,x = K1, u1,y = L1, v1,x = K2,
v1,y = L2 are local. As we shall see later, the potentials un, vn are mutually
independent. Choosing a different initial vector Φ0 6= 0, one obtains another
set of potentials, linearly dependent on the potentials just constructed.

The constant astigmatism equation is invariant under the duality (7),
while Construction 1 is not. Mutatis mutandis, we obtain the dual construc-
tion.
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Construction 2. Denote

ūu0 = 1, v̄v0 = 0,

and define potentials ūun, v̄vn by induction

ūun,x = L̄L1ūun−1 −
1
2
v̄vn−1 +

1
2

(L̄L1 + z
–
KK 1)

n−2∑
i=0

ūui −
1
4

n−2∑
i=0

v̄v i,

ūun,y = –
KK 1ūun−1 +

1
2

(
–
KK 1 +

L̄L1

z

) n−2∑
i=0

ūui −
1
4z

n−2∑
i=0

v̄v i,

v̄vn,x = L̄L2ūun−1 − L̄L1v̄vn−1 +
1
2

(L̄L2 + z
–
KK 2)

n−2∑
i=0

ūui −
1
2

(L̄L1 + z
–
KK 1)

n−2∑
i=0

v̄v i,

v̄vn,y = –
KK 2ūun−1 − –

KK 1v̄vn−1 +
1
2

(
–
KK 2 +

L̄L2

z

) n−2∑
i=0

ūui −
1
2

(
–
KK 1 +

L̄L1

z

) n−2∑
i=0

v̄v i,

(47)

for all n > 0, with
–
KK 1,

–
KK 2, L̄L1, L̄L2 being given by formulas (43) above.

By construction, ūui, v̄v i are also nonlocal potentials of the constant astig-
matism equation. They are said to be dual to ui, vi. However, ui, vi, ūui, v̄v i
are not functionally independent, as we shall see below. We shall not present
any construction of potentials u′i, v

′
i, ūu
′
i, v̄v
′
i. Instead, in the next subsection,

we shall show how they depend on the potentials ui, vi, ūui, v̄v i already con-
structed.

Remark 6.3.1. The potentials χ, ζ, µ, τ introduced in (26) are functions of
x, y, z, u1, v1, w1 = v̄v1, namely

µ = −2v1, χ = −4u1 + xy,

ζ = −2w1, τ = 2u2
1 + 2u1 − 4u2 − 2yv1 − 1

2
ln z + 1

4
x2y2.

6.4 Relations between potentials

The reciprocal and reciprocal dual conservation laws depend on ordinary and
dual conservation laws according to following two propositions.
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Proposition 6.4.1. Potentials ui, vi, ūui, v̄v i transform under X as follows:

u′i = ūui −
1

2
(1 + xy)ūui−1 +

1

2
xv̄v i−1,

v′i = − 1

2
yūui−1 +

1

2
v̄v i−1,

ūu ′i =
i∑

j=0

1

2i−j

(
uj −

xz

x2z + 1
vj

)
,

v̄v ′i = 2vi+1 − 2v1

i∑
j=0

1

2i−j

(
uj −

xz

x2z + 1
vj

)
.

Moreover, p′′i = p for each potential pi = ui, vi, ūui, v̄v i.

Proposition 6.4.2. Potentials ui, vi, ūui, v̄v i transform under Y as follows:

u∗i =
i∑

j=0

1

2i−j

(
ūuj −

y

y2 + z
v̄v j

)
,

v∗i = 2vi+1 − 2v̄v1

i∑
j=0

1

2i−j

(
ūuj −

y

y2 + z
v̄v j

)
,

ūu∗i = ui −
1

2
(1 + xy)ui−1 +

1

2
yvi−1,

v̄v∗i = − 1

2
xui−1 +

1

2
vi−1.

Moreover, p∗∗i = p for each potential pi = ui, vi, ūui, v̄v i.

We see that equalities X ◦ X = id = Y ◦ Y still hold after extension of
X ,Y to the higher potentials.

Since reciprocal and reciprocal dual conservation laws are linear combi-
nations of on ordinary and dual conservation laws, we focus on the latter, i.e.
ui, vi and ūui, v̄v i. It follows that hierarchies ui, vi, ūui, v̄v i are not independent.
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Proposition 6.4.3. For all integers n ≥ −1 and constants ci, we have the
relations

n∑
i=0

uiūun−i +
n∑
i=0

(xui − vi)(yūun−i − v̄vn−i)

− 2
n+1∑
i=0

uiūun−i+1 − cn+1 = 0.

(48)

We have the freedom to choose c(λ) 6= 0 (if c = 0, then the three hierar-
chies are functionally dependent again). To have ūu0 = 1, we choose c = −2,
i.e., c0 = −2, ci = 0 for i > 0. Solving (48) with respect to ūuk+1 and renaming
v̄v i to wi, we get the recursion formulas

ūu0 = 1,

ūuk+1 =
1 + xy

2

k∑
i=0

uiūuk−i −
y

2

k∑
i=0

ūuivk−i +
1

2

k∑
i=0

(vi − xui)wk−i

−
k+1∑
i=1

uiūuk−i+1.

(49)

E.g., ūu1 = −u1 + 1
2
(1 + xy), etc.

Assuming assignments (49) and denoting wi = v̄v i, systems (46) and (47)
reduce to covering (50) below.
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Construction 3. Let

u0 = 1, v0 = w0 = 0,

and define potentials un, vn, wn by induction

un,x = K1un−1 +
1
2

(K1 + zL1)
n−2∑
i=0

ui −
1
4
z

n−2∑
i=0

vi,

un,y = L1un−1 −
1
2
vn−1 +

1
2

(
L1 +

K1

z

) n−2∑
i=0

ui −
1
4

n−2∑
i=0

vi,

vn,x = K2un−1 −K1vn−1 +
1
2

(K2 + zL2)
n−2∑
i=0

ui −
1
2

(K1 + zL1)
n−2∑
i=0

vi,

vn,y = L2un−1 − L1vn−1 +
1
2

(
L2 +

K2

z

) n−2∑
i=0

ui −
1
2

(
L1 +

K1

z

) n−2∑
i=0

vi,

wn,x = L̄L2ūun−1 − L̄L1wn−1 +
1
2

(L̄L2 + z
–
KK 2)

n−2∑
i=0

ūui −
1
2

(L̄L1 + z
–
KK 1)

n−2∑
i=0

wi,

wn,y = –
KK 2ūun−1 − –

KK 1wn−1 +
1
2

(
–
KK 2 +

L̄L2

z

) n−2∑
i=0

ūui −
1
2

(
–
KK 1 +

L̄L1

z

) n−2∑
i=0

wi,

(50)

with ūui being given by formulas (49).

By construction, equations (50) are compatible and yield a triple hierar-
chy of conservation laws of the CAE.

It follows that hierarchies ui, vi, wi are independent, as we have shown in
the last section of [26].

Proposition 6.4.4. There is no possible functional dependence among the
potentials ui, vi, wi.

7 Iteration of the superposition principle for

the CAE

In this section, results from [25] are summarized. The most important result
is a formula solving the recurrences from Prop. 2.3.1.
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Proposition 7.0.5. Let x1, y1, g1 be the associated potentials corresponding
to the pair ω[0], ω[1] of sine-Gordon solutions. Let S[j] be 4× 4 matrices with
entries defined by formulas

S
[j]
11 =

λj+1λ1

λ2
j+1 − λ2

1

,

S
[j]
13 = − λ2

j+1λ
2
1

λ2
j+1 − λ2

1

×
2 sin

ω̄ω [j] − ω[j]

2

λ2
j+1 + λ2

1 − 2λj+1λ1 cos
ω̄ω [j] − ω[j]

2

,

S
[j]
22 =

λ2
j+1 − λ2

1

λj+1λ1

, S
[j]
24 = −2 sin

ω̄ω [j] − ω[j]

2
,

S
[j]
33 =

1

S
[j]
44

=
−λj+1λ1

λ2
j+1 + λ2

1 − 2λj+1λ1 cos
ω̄ω [j] − ω[j]

2

(51)

all the other entries being zero. Let
x[n]

y[n]

g[n]

1/g[n]

 =

(
n−1∏
i=1

S[i]

)
x1

y1

g1

1/g1

. (52)

Then x[n], y[n], g[n] are the associated potentials corresponding to the pair

ω̄ω [n−1], ω[n]. Moreover, if z[n] = 1/g[n]2, then z[n](x[n], y[n]) is a solution of
the constant astigmatism equation (5).

7.1 Multisoliton solutions

Let ω[0] = 0. Let us define

ai := eλiξ+η/λi+ci ,

ci being constants. Solving the system (10), we reveal one-soliton solutions
of the sine-Gordon equation

ω[1] = 4 arctan a1, ω̄ω [1] = 4 arctan a2 (53)
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and, applying the superposition principle (11) to the triple ω[0], ω[1], ω̄ω [1], we
easily obtain the two-soliton solutions

ω[2] = 4 arctan
(λ1 + λ2)(a1 − a2)

(λ1 − λ2)(1 + a1a2)
,

ω̄ω [2] = 4 arctan
(λ2 + λ3)(a2 − a3)

(λ2 − λ3)(1 + a2a3)
.

(54)

An exact analytic n-soliton solution, in our notation ω[n], of the sine-Gordon
equation has been obtained by several authors [1, 12, 13, 14, 15, 21], see also
[3, 49]. The formula best suited for this paper can be found e.g. in [15] and
is of the form

ω[n] = arccosϕ[n], (55)

where

ϕ[n] = 1− 2
∂2

∂ξ ∂η
ln detM (56)

M being the n× n matrix with entries

Mij =
1

λi + λj

(√
aiaj +

1√
aiaj

)
.

Note also that ω̄ω [n] arises from ω[n] by increasing all lambdas’ indices by one,
namely

ω̄ω [n] = arccos ϕ̄ϕ [n], (57)

where

ϕ̄ϕ [n] = 1− 2
∂2

∂ξ ∂η
ln det

—
MM (58)

and

—
MM ij =

1

λi+1 + λj+1

(√
ai+1aj+1 +

1√
ai+1aj+1

)
.
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Definition 7.1.1. By a j-soliton solution of the constant astigmatism equa-
tion we shall mean a triple (x[j], y[j], g[j]) formed by associated potentials
corresponding to the j-soliton solution ω[j] and the (j − 1)-soliton solution
ω̄ω [j−1] (see diagram (18)) of the sine-Gordon equation.

Remark 7.1.1. To obtain a solution of the CAE explicitly, one would have

to express z[j] = 1/g[j]2 in terms of x[j] and y[j]. However, this is almost never
possible in terms of elementary functions.

A one-soliton solution of the CAE is easy to construct. Following (15),
x[1] = x1 and g[1] = g1 can be obtained by differentiation, namely

g1 =
dω[1]

dc1
=

4a1

a2
1 + 1

, x1 = −2
d ln g1

dc1
= 2

a2
1 − 1

a2
1 + 1

. (59)

For y[1] = y1 we have the system

y
[1]
ξ =

λ1 sin(ω[1] + ω̄ω [0])

g1

=
λ1

2
,

y[1]
η = −sin(ω[1] − ω̄ω [0])

λ1g1

= − 1

2λ1

with the general solution

y1 =
λ1

2
ξ − η

2λ1

+ k1, (60)

k1 being an arbitrary constant. Setting z1 = 1/g2
1, eliminating ξ, η and drop-

ping the lower indices, one reveals the von Lilienthal solution

z =
1

4− x2 , (61)

see Fig. 15.

Proposition 7.1.1. Let us denote

A[j] = 2ϕ̄ϕ [j]ϕ[j] and B[j] = 2
√

(ϕ̄ϕ [j]2 − 1)(ϕ[j]2 − 1) ,
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where ϕ[j] and ϕ̄ϕ [j] are defined by (56) and (58) respectively. Then the n-
soliton solution of the CAE is given by the formula

x[n]

y[n]

g[n]

1/g[n]

 =

(
n−1∏
i=1

S[i]

)
x1

y1

g1

1/g1

, (62)

where the only nonzero entries of matrices S[j] are given by

S
[j]
11 =

λj+1λ1

λ2
j+1 − λ2

1

,

S
[j]
13 =

λ2
j+1λ

2
1

λ2
1 − λ2

j+1

·
√

2− A[j] −B[j]

λ2
1 + λ2

j+1 − λj+1λ1

√
2 + A[j] +B[j]

S
[j]
22 =

λ2
j+1 − λ2

1

λj+1λ1

, S
[j]
24 = −

√
2− A[j] −B[j] ,

S
[j]
33 =

1

S
[j]
44

=
−λj+1λ1

λ2
1 + λ2

j+1 − λj+1λ1

√
2 + A[j] +B[j]

.

(63)

Formulas (63) follow from plugging (55) and (57) into (51) and employing
trigonometric identities.

7.2 Multisoliton surfaces of constant astigmatism

Let us adapt the notation from Subsect. 2.3, i.e. let us define (cf. (19))

r[k] = r(λ1λ2...λk), r̄r [k] = r(λ2λ3...λk+1).

Then we have the recurrence relation (cf. (12))

r[j+1] =

r[j] +
2λj+1 cscω[j]

1 + λ2
j+1

[
sin
(ω[j] − ω[j+1]

2

)
r
[j]
ξ + sin

(ω[j] + ω[j+1]

2

)
r[j]
η

] (64)

with the initial condition r[0] = r̄r [0] = r0. Surfaces r̄r [i] are obtained from r[i]

simply by increasing all lambdas’ indices by one and replacing ω[i] with ω̄ω [i].
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The iteration process is shown in the diagram below, cf. (18).

r[0]
λ2 //

λ1

��

r̄r [1]
λ3 //

λ1

��

r̄r [2]

λ1

��

λ4 // r̄r [3]

λ1

��

λ5 // r̄r [4]

λ1

��

λ6 // · · ·

r[1]
λ2 // r[2]

λ3 // r[3]
λ4 // r[4]

λ5 // r[5]
λ6 // · · ·

(65)

Recall that substituting λ = 1 into (12) one gets a complementary pseudo-
spherical surface (13). Obviously, the surfaces r[j] and r̄r [j−1] become comple-
mentary when substituting λ1 = 1 into r[j].

The common involute, r̃r [j], of a pair of complementary pseudospherical
surfaces, r[j]|λ1=1 and r̄r [j−1], is of constant astigmatism and is given by (17).
In our notation, the equation turns out to be

r̃r [j] = r̄r [j−1] − ñn [j] ln g[j]|λ1=1,

where g[j] is determined by (52) and ñn [j], a unit normal of the constant
astigmatism surface, is simply

ñn [j] = r[j]|λ1=1 − r̄r [j−1].

Definition 7.2.1. If the surfaces r[j]|λ1=1 and r̄r [j−1] are j-soliton and (j−1)-
soliton pseudospherical surfaces respectively, then the corresponding common
involute, r̃r [j], will be called a j-soliton surface of constant astigmatism.

Let us also remark that ñn [j](ξ, η) parameterises a unit sphere by slip lines
(see Sect. 3).

7.3 Examples of multisoliton solutions

Following previous part of this section, it is a matter of routine to gene-
rate examples of multisoliton solutions of the CAE as well as corresponding
constant astigmatism surfaces and slip line fields. Unfortunately, construc-
tion of orthogonal equiareal patterns quickly leaves the realm of elementary
functions.

Throughout this section we provide pictures of the surfaces, solutions and
slip line fields; all formulas are to be found in [25]. We use the notation from
diagrams (18) and (65).

The n-soliton pseudospherical surfaces are easy to compute, see Fig. 14.
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Figure 14: From the left: One-, two- and three-soliton pseudospherical sur-

faces, r̄r[1], r[2], r[3] respectively, λ1 = 1, λ2 = 1.5, λ3 = 1.8. The leftmost is
the surface of Dini.

7.3.1 One-soliton solutions

One-soliton solution z[1](x[1], y[1]), corresponding to the pair ω[0] and ω[1],
has been already constructed, see (61) and Fig. 15. Corresponding surfaces
r̃r [1] of constant astigmatism coincide with the von Lilienthal class, see Fig. 2.
Evolutes of the surface r̃r [1] are the pseudosphere r[1]|λ1=1 and the z-axis r[0] =
(0, 0, ξ+η). The slip line field ñn [1] can be seen in Fig. 4 as well as corresponding
orthogonal equiareal pattern, which is the Archimedean projection.

7.3.2 Two-soliton solutions

A plot of two-soliton solution z[2](x[2], y[2]), corresponding to the pair ω̄ω [1] and
ω[2], can be seen in Fig. 16.
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Figure 15: Solution z = 1/(4− x2) of the CAE. One can clearly see that the
solution is geometrically admissible when −2 < x < 2.

Figure 16: Two soliton solution of the CAE, λ1 = 1.2, λ2 = 1.5. Right part
of the figure shows the behavior around the origin.

Corresponding surfaces r̃r [2](ξ, η) of constant astigmatism are plotted in
Fig. 17. Evolutes of the surface r̃r [2] are r[2]|λ1=1 and the Dini’s surface r̄r [1].
For the slip line field ñn [2](ξ, η) see Fig. 18. To obtain an associated orthogonal
equiareal pattern one needs to invert the transformation (x[2], y[2]) ↔ (ξ, η),
which is not possible in terms of elementary functions.
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Figure 17: Two soliton surfaces r̃r[2](ξ, η) of constant astigmatism, λ2 = 1.5
(left) and its limit for λ2 → 1 (right). The second surface is displayed from
two views under the parameterisation by (Ξ,Θ) = (ξ + η, ξ − η).

Figure 18: Slip line field ñn[2](ξ, η), λ2 = 1.5, ci = 0 (left) and its limit for
λ2 → 1 (right) with coordinate lines ξ = 0 and η = 0 highlighted (thick black
curves).
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7.3.3 Three-soliton solutions

A plot of three-soliton solution z[3](x[3], y[3]), corresponding to the pair ω̄ω [2]

and ω[3], is displayed in Fig. 19, a multivaluedness of the function z being
clearly identified. In the right side of the figure (values of z near the point
(0, 0, 0)) one can observe that at least eight values of z may correspond to
one particular choice of x and y.

Figure 19: Three soliton solution of the CAE, λ1 = 1.2, λ2 = 1.5, λ3 = 1.8.
Right part of the figure shows the behavior around the origin.

Corresponding surfaces r̃r [3](ξ, η) of constant astigmatism are plotted in
Fig. 20. Evolutes of the surface r̃r [3] are r[3]|λ1=1 and r̄r [2]. For the slip line field
ñn [3](ξ, η) see Fig. 21. It does not come as a surprise that obtaining an asso-
ciated orthogonal equiareal pattern requires inverting of the transformation
(x[3], y[3])↔ (ξ, η), which is not possible in terms of elementary functions.
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Figure 20: Three soliton surfaces r̃r[3](ξ, η) of constant astigmatism, λ2 = 1.5,
λ3 = 1.8 (left) and its limit for (λ2, λ3)→ (1, 1) (right). The second surface is
displayed from two views under the parameterisation by (Ξ,Θ) = (ξ+η, ξ−η).

Figure 21: Slip line field ñn[3], λ2 = 1.5, λ3 = 1.8, (left) and its limit for
(λ2, λ3) → (1, 1) (right) with coordinate lines ξ = 0 and η = 0 highlighted
(thick black curves).
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8 More exact solutions of the CAE

The last section of the thesis summarizes the work [27]. In the paper, we
construct another seed solution of the CAE which is ready to be transformed
to infinite number of new solutions by nonlinear superposition formula (52).
Since the zero sine-Gordon solution was succesfully planted in previous sec-
tion, we deal with a nonzero sine-Gordon seed and its Bäcklund transforma-
tion. Techniques for obtaining such pairs can be found e.g. in [28] or [20]; the
simplest initial sine-Gordon solution being the so called “travelling wave”. As
we know from Sect. 4, Prop. 4.4.1, the corresponding solutions of the CAE
are the Lipschitz solutions.

In other words, in this section, we are going to reproduce Lipschitz solu-
tions to obtain an infinite set of new solutions from it. However, the explicit
form of the general Lipschitz solution as introduced in Sect. 4, Thm. 4.2.1,
is not suitable for our approach; we seek the seed solution parameterised by
coordinates ξ, η in order to be prepared for the formula (52).

8.1 Construction of a seed solution

According to Prop. 4.4.1, solutions of the sine-Gordon equation correspond-
ing to Lipchitz’s solutions of the CAE satisfy

ωξ = kωη, (66)

where k is a nonzero constant. Thus, they are of the form ω(kξ + η + C),
where C is a constant. Let us perform a transformation to new coordinates
α = kξ + η and β = kξ − η in which the sine-Gordon equation turns out to
be

ωαα − ωββ =
1

k
sinω.

The condition (66) reduces to

ωβ = 0

and, therefore, the seed sine-Gordon solutions we are working with depend
solely on α and they satisfy the ODE

kωαα = sinω. (67)
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Multiplying both sides of (67) by ωα and integrating, one can reduce the
order of the equation which becomes

kω2
α = −2 cosω + 2l,

l being a constant. Solving for ωα we obtain

ωα = ±
√

2l − 2 cosω

k
. (68)

Let ω be a solution of (67). According to [28], its Bäcklund transformation
ω(λ) can be written as

ω(λ) = 4 arctan
( f

ak2 +
c

ak
tanh[c(β + b(α) +K)]

)
− ω, (69)

where

a =
sinω

4kλ
− ωα

4k
, f =

λ

4
− k cosω

4λ
,

c =

√
λ4 − 2klλ2 + k2

4kλ
= const

(70)

and b(α) satisfies

bα =
λωα + sinω

λωα − sinω
. (71)

Proposition 8.1.1. Let ω be a solution of (67) and let ω(λ), given by (69),
be its Bäcklund transformation with parameter λ. Let a, f, c be defined by
(70) and let b satisfy (71). Then the associated potentials x(λ), y(λ), g(λ) cor-
responding to the pair ω, ω(λ) are given by formulas

x(λ) =
8c2kf cosh 2B + 4c(f 2 + k4a2 + c2k2) sinh 2B

(f 2 + k4a2 + c2k2) cosh 2B + 2ckf sinh 2B + f 2 + k4a2 − c2k2 ,

y(λ) =
( f sinω

16λc2k2a
− 2f − λ

8c2k

)
cosh 2B

−
((k4a2 − c2k2 − f 2) sinω

32λc3k3a
+
f(2f − λ)

8c3k2

)
sinh 2B

+
1

λ4 − 2klλ2 + k2

(
λ4 − k2

2
β +

λ4 + k2

2
α− kλ2

∫
cosω dα

)
,

g(λ) =
4c2k3a(1− tanh2B)

k4a2 + f 2 + 2ckf tanhB + c2k2 tanh2B
,

(72)
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where B = c(β+ b+K) and l is a constant. Moreover, if z(λ) = 1/g(λ)2, then
z(λ)(x(λ), y(λ)) is a solution of the constant astigmatism equation (5).

Remark 8.1.1. According to [16], we have the following results of integration
of (68),

• for l/k > 1/k (case A)

ω0 = 2 arccos

[
sn

(−αp√
k

;
1

p

)]
, (73)

• for |l/k| < 1/k (case B)

ω0 = 2 arcsin

[
dn

(
α√
k

; p

)]
, (74)

• for l = 1 (case C)

ω0 = 4 arctan

(
exp

α√
k

)
, (75)

where we have denoted

p =

√
1 + l

2
. (76)

Note that case C coincides with one-soliton solution of the sine-Gordon equa-
tion, cf. (53). Hence, the case when l = 1 is taken out of consideration in the
sequel.

Remark 8.1.2. A closer look shows that the solution (72) is periodic in
the y-direction. Indeed, the shifts α 7−→ α + 4

√
kK(p) (in case A) and α 7−→

α + 2
√
kK(p) (in case B) leave x(λ) and g(λ) unchanged, while the y(λ) is

translated by

PA = Re

(
2
√
k [(k + λ2)2 − 4kλ2p2] K(p)

(k + λ2)2 − 4k2λ2

+
8k

3
2λ2pE

[
sn
(
pK(p),

1

p

)
,
1

p

]
(k + λ2)2 − 4k2λ2

)
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in case A and by

PB =
2
√
k (k − λ2)2

(k + λ2)2 − 4k2λ2 K(p) +
8k

3
2λ2

(k + λ2)2 − 4k2λ2 E(p)

in case B. Here K and E denote complete elliptic integrals of the first and the
second kind respectively. Finally, a detailed look at the formula (52) reveals
that the n-th solution, arising from the periodic seed (72), is also periodic

with period PA × (
∏n−1

i=1 S
[i]
22) in case A and PB × (

∏n−1
i=1 S

[i]
22) in case B.

A graph of the solution z(x, y) = z(λ)(x(λ), y(λ)), where x, y and z = 1/g2

are given by (72) under the parameterisation by ξ, η, can be easily plotted
for both cases A and B, see Fig. 22. Periodicity in y-direction can be clearly
identified.

Figure 22: Solutions z(λ)(x(λ), y(λ)) of the CAE, λ = 1.001, k = 1, K = 0,
l = 3/2 (case A, left), l = 1/2 (case B, right).

8.2 Surfaces of constant astigmatism

Pseudospherical surfaces corresponding to the solutions satisfying (66) were
constructed by Zadadaev [54] and, according to [40], they coincide with
surfaces studied in the 19th century by Minding [38], see also [10, 39]. In

54



Zadadaev’s parameterisation by asymptotic coordinates the surfaces are given
by formula

r0 =

√
k

p(k + 1)


2 sin

ω0

2
sin[p(ξ − η)]

2 sin
ω0

2
cos[p(ξ − η)]

ξ + η +
1√
k

∫
cosω0 dα

, (77)

where ω0 = ω0(α) = ω0(kξ + η) is one of the solutions (73)–(75) and the
constants k, p have the same meaning as in the previous section, see (66)
and (76). For pictures corresponding to all three cases, A, B and C, see
Fig. 23, cf. [38, 54], [10, p. 192–193] or [39, p. 228].

Figure 23: From the left: Minding’s pseudospherical surfaces r0 (parame-
terised by ξ, η) corresponding to solutions (73), (74) and (75) respectively,
k = 1, l = 3/2 (left), l = 1/2 (middle), l = 1 (right). The rightmost surface
is the pseudosphere.

Using (12) we routinelly compute a Bäcklund transformation r(λ) of the
surface r0, see Fig. 24.
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Figure 24: Transformed Minding’s pseudospherical surfaces (parameterised
by α, β) corresponding to cases A, B and C respectively, k = 1, λ = 1, l = 3/2
(left), l = 1/2 (middle), l = 1 (right). The righmost is the two-soliton Kuen’s
surface [31], see also [10, p. 470].

The corresponding family of constant astigmatism surfaces, the common
involutes of complementary pseudospherical surfaces r0 and r(1), can be easily
computed using (17). Resulting surfaces are plotted in Figs. 25 and 26. The
slip line field, ñn(1), can be seen in Fig. 27.
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Figure 25: Constant astigmatism surface r̃r(1), parameterised by α, β, corre-
sponding to case A. One of the pieces the surface is formed of is zoomed in
the right. The piece is displayed from two mutually opposite directions.
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Figure 26: Constant astigmatism surface r̃r(1), parameterised by α, β, corre-
sponding to case B. The first two pictures from the left show two views of
the same surface from mutually opposite directions. The repeated pieces are
zoomed in the right.

Figure 27: Slip line fields ñn(1)(ξ, η) corresponding to case A (left) and case B
(right).
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Let us proceed to one more example. Using Proposition 7.0.5 we rou-
tinely construct solution z(λ1λ2)(x(λ1λ2), y(λ1λ2)) (see Fig. 28) from known solu-
tion z(λ1)(x(λ1), y(λ1)). Twice transformed Minding’s pseudospherical surfaces
r(λ1,λ2) can be also routinely computed, see Fig. 29. Corresponding constant
astigmatism surfaces are plotted in Fig. 30.

Figure 28: A rather complicated multivalued solutions

z(λ1λ2)(x(λ1λ2), y(λ1λ2)) of the CAE that are periodic in the y-direction,
λ1 = 1.001, λ2 = 1.3, k = 1, K = 0, l = 3/2 (case A, left), l = 1/2 (case B,
right).
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Figure 29: Pieces of pseudospherical surfaces r(λ1λ2), parameterised by α, β,
with λ1 = 1, λ2 = 1.3. Case A (left), case B (right).

Figure 30: Two pieces of constant astigmatism surface, the common involute

of r(λ2) and r(1λ2) with λ2 = 1.3, case B. The second piece is displayed from
two views. Surface is parameterised by α, β.
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9 Presentations related to the thesis

• Mathematics in the modern world, August 2017, Novosibirsk, Russia.
Talk: “More exact solutions of the constant astigmatism equation”

• Workshop on Integrable Systems, December 2016, Sydney, Australia.
Talk: “On the constant astigmatism equation and surfaces of constant
astigmatism”

• Nonlinear analysis and its applications, September 2016, Samarkand,
Uzbekistan.
Talk: “On the constant astigmatism equation and surfaces of constant
astigmatism”

• Geometric methods in control theory and mathematical physics: dif-
ferential equations, integrability, qualitative theory, September 2016,
Ryazan, Russia.
Talk: “On the constant astigmatism equation and surfaces of constant
astigmatism”

• 7-th International Conference on Mathematical Analysis, Differential
Equations & Their Applications MADEA-7, September 2015, Baku,
Azerbaijan.
Talk: “On multisoliton solutions of the constant astigmatism equation”

• International Congress of Mathematicians (ICM), August 2014, Coex,
Seoul, Korea.
Talk: “On surfaces of constant astigmatism”

• Mathematics in Armenia: Advances and Perspectives, August 2013,
Tsaghkadzor, Armenia.
Talk: “On surfaces of constant astigmatism”

• Mathematical Congress of the Americas (MCA), August 2013, Guana-
juato, Mexico.
Talk: “On surfaces of constant astigmatism”

• Geometry and Algebra of PDEs, August 2012, Tromsø, Norway.
Talk: “Some results concerning the constant astigmatism equation”
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• Algebra, Geometry and Mathematical Physics (AGMP), October 2011,
Mulhouse, France.
Talk: “A reciprocal transformation for the constant astigmatism equa-
tion”

10 Publications constituting the body of the

thesis

Publications constituting the body of the thesis and my percentage contri-
bution towards each of them are listed below.

• A. Hlaváč, More exact solutions of the constant astigmatism equation,
J. Geom. Phys. 123 (2018), p. 209–220. . . . . . . . . . . . . . . . . . . . . . . .100 %

• A. Hlaváč and M. Marvan, Nonlocal conservation laws of the constant
astigmatism equation, J. Geom. Phys. 113 (2017), p. 117–130 . . 50 %

• A. Hlaváč, On multisoliton solutions of the constant astigmatism equa-
tion, J. Phys. A: Math. Theor. 48 (2015) 365202 . . . . . . . . . . . . . . 100 %

• A. Hlaváč and M. Marvan, A reciprocal transformation for the constant
astigmatism equation, SIGMA 10 (2014), 091 . . . . . . . . . . . . . . . . . . 75 %

• A. Hlaváč and M. Marvan, On Lipschitz solutions of the constant astig-
matism equation, J. Geom. Phys. 85 (2014), p. 88–98 . . . . . . . . . . 25 %

• A. Hlaváč and M. Marvan, Another integrable case in two-dimensional
plasticity, J. Phys. A: Math. Theor. 46 (2013) 045203 . . . . . . . . . . 50 %

11 Papers citing the publications constituting

the body of the thesis

All citations without self-citations are listed below. By self-citations we mean
references by a coauthor of the cited article.

• A. Hlaváč and M. Marvan, Another integrable case in two-dimensional
plasticity, J. Phys. A: Math. Theor. 46 (2013) 045203

is cited by:
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1. N. Manganaro and M. Pavlov, The constant astigmatism equation.
New exact solution, J. Phys. A: Math. Theor. 47 (2014) 075203.

2. M.V. Pavlov and S.A. Zykov, Lagrangian and Hamiltonian struc-
tures for the constant astigmatism equation, J. Phys. A: Math.
Theor. 46 (2013) 395203.

3. S.I. Senashov and A. Yakhno, Some symmetry group aspects of
a perfect plane plasticity system, J. Phys. A: Math. Theor. 46
(2013) 355202.

• A. Hlaváč and M. Marvan, A reciprocal transformation for the constant
astigmatism equation, SIGMA 10 (2014), 091

is cited by:

1. N. Manganaro and M. Pavlov, The constant astigmatism equation.
New exact solution, J. Phys. A: Math. Theor. 47 (2014) 075203.

2. M.V. Pavlov and S.A. Zykov, Lagrangian and Hamiltonian struc-
tures for the constant astigmatism equation, J. Phys. A: Math.
Theor. 46 (2013) 395203.

Regrettably, two more citations from authors Shou-Fu Tian, Li Zou and
Tian-Tian Zhang of the paper “Lie symmetry analysis, conservation laws and
analytical solutions for the constant astigmatism equation,” Chin. J. Phys. 55
(2017) 1938–1952 are to be mentioned. Both of them refer to our two preprints

• A. Hlaváč and M. Marvan, Some results concerning the constant astig-
matism equation, arXiv:1206.0321 (the content later published in [22]
and [23]),

• A. Hlaváč and M. Marvan, A reciprocal transformation for the constant
astigmatism equation, arXiv:1111.2027 (later published as [24]),

although the results from the preprints were already published in journals
at that time. What is more, the results are ignored by the authors, as all
CAE solutions from their paper had been published three years earlier in our
work [23].
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[26] A. Hlaváč and M. Marvan, Nonlocal conservation laws of the constant
astigmatism equation, Journal of Geometry and Physics 113 (2017),
p. 117–130.
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