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Matematický ústav v Opavě
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1. Introduction

This thesis is based on three independent papers [P1], [P2] and [P3]. The common subject

is the dynamical behaviour of the macroeconomic equilibrium models. This abstract consists

of three parts. The first part is focused on selected kinds of dynamics in the plane R2,

namely local stability analysis, relaxation oscillations and chaos. The second part presents

an overview of macroeconomic equilibrium models used in this thesis; the starting point

upon which these models are built is the fundamental macroeconomic model called the

IS-LM model. In the third part the dynamical behaviour of these models is described.

The first paper [P1] deals 1) with definitions and descriptions of particular functions

used in the original IS-LM model equipped by the so-called Kaldor’s condition, and 2) with

the stability of the model based on these functions. In the second paper [P2] the sufficient

condition for the existence of relaxation oscillations in the original IS-LM model is formulated

and proved. The third paper [P3] is focused on the chaos existence in a dynamical system

generated by the Euler equation branching in the plane R2, i.e. a special type of differential

inclusion in the plane R2, and its application to a new macroeconomic equilibrium model

called the IS-LM/QY-ML model.

2. Description of the dynamics in the Euclidean plane

Many models describing dynamics in economies are given by two dimensional autonomous

systems in the form

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2),
(1)

where f1 and f2 are non-linear real functions, see e.g. [8], [15], [25]. Such a system defines

a continuous dynamical system in the Euclidean plane. The functions f1 and f2 are usually

assumed to be continuous and differentiable. The standard analysis of dynamical behaviour

of the systems (1) lies in the local stability analysis, i.e. in the classification of singular

points using eigenvalues of Jacobi’s matrix of the linearised system to (1), see e.g. [1], [9],

[14] or [24], where the singular points are defined to be the intersection points of the curves

given by the equations f1(x1, x2) = 0 and f2(x1, x2) = 0. In this thesis, we focus on the

hyperbolic singular points, i.e. stable nodes (negative real eigenvalues), stable foci (complex

eigenvalues with negative real part), unstable nodes (positive real eigenvalues), unstable foci

(complex eigenvalues with positive real part) and saddles (one positive and one negative real

eigenvalue).

Another point of view on the dynamics is hidden in the existence of different types of

oscillations in these systems. We focus on the so-called relaxation oscillations, which are

a type of oscillation resembling a limit cycle, see e.g [6], [9] or [12]. The relaxation oscillations
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emerge in the system

ẋ1 = f1(x1, x2)

ẋ2 = εf2(x1, x2),
(2)

where ε is a small positive parameter. Here, the variable x2 changes very slowly during the

time compared with the variable x1. So, we can consider the system ẋ1 = f1(x1, x2), ẋ2 = 0

instead of the system (2). Thus, only the equation ẋ1 = f1(x1, x2) remains to be considered

where the variable x2 stands for a parameter. It follows that all points lying on the curve

given by the equation f1(x1, x2) = 0 are singular. Then, we can define a stable and an

unstable arc to be the set of all possible stable and unstable singular points of the system (2)

lying on this curve, respectively. If the functions f1 and f2 are such that there is one unstable

regime located between any two stable regimes, then there exist relaxation oscillations in

this system, see e.g [6], [9] or [12]. An example illustrating a typical vector field given by the

right-hand side of such a system is shown in Figure 1. The red cycle in Figure 1 represents

Figure 1. Relaxation oscillations

the relaxation oscillations in this system. Almost all trajectories of this system are directed

upwards or downwards, i.e. are oriented in the direction from unstable to stable arcs, see

the blue arrows in Figure 1 indicating the direction of the trajectories, and the velocity of

the motion of the moving point is infinitely large on these vertical trajectories. Only the

moving point located on or near the stable arcs has a finite velocity of motion and goes on

or along the stable arcs. So, the cycle consists of four parts - two parts with an infinitely

large velocity of motion (see part B and D) and two parts along the stable arcs with a finite

velocity of motion (see part A and C).

It is a known fact that in the two-dimensional systems of the form (1) no chaos arises,

see [9], [14], [15], [25]. However, in the last decade a new approach to the study of two-

dimensional dynamics based on the continuous dynamical system generated by a special type

of differential inclusion called the Euler equation branching has been developed. In [16], [21]

several particular results concerning the onset of chaos in the continuous dynamical system

generated by the Euler equation branching were given. In this thesis we continue this work

and we present certain new results in this area.
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Definition 2.1. (see [18]) The differential inclusion is given by

ẋ ∈ F (x), (3)

where F is a set-valued map which associates a set F (x) ⊂ Rn to every point x ∈ Rn.

Note that any autonomous system ẋ = f(x), where f is a real function in the Euclidean

n-dimensional space, can be described by a differential inclusion (3) with F (x) = {f(x)}.

Definition 2.2. (see [21]) Let X ⊂ R2 be an open set and f, g : X → R2 be continuous

functions. Let us consider the following differential inclusion

ẋ ∈ {f(x), g(x)}. (4)

We say that there is the Euler equation branching in the point x ∈ X if f(x) 6= g(x). If there

is the Euler equation branching in every point x ∈ X, then we say that there is the Euler

equation branching on the set X.

Note that one branch of the differential inclusion (4) is the system (1).

Let X ⊆ R2 be a non-empty open set equipped with the Euclidean metric d and

T := [0,∞) be a time index, let F : X → 2R2
be a set-valued function given by F (x) :=

{f(x), g(x)}, where f, g : X → R2 are continuous functions such that the condition f(x) 6=
g(x) is satisfied for all x ∈ X. Let Z denote the set {γ|γ : T → X}, where γ : T → X are

functions that are continuous and continuously differentiable almost everywhere on T .

Definition 2.3. (see [21]) Let F : X → 2R2
be a set-valued function specified above.

A dynamical system generated by F is defined to be a set

D := {γ ∈ Z|γ̇(t) ∈ F (γ(t)) a.e.} (5)

The functions γ from Definition 2.3 define the solutions of the differential inclusion (4).

Note that the solutions of the Euler equation branching are the solutions of the first branch

ẋ = f(x), the solutions of the second branch ẋ = g(x) and the switching solutions between

these two branches.

Definition 2.4. (see [21]) Let F : X → 2R2
be a set-valued function specified above. We

say that a non-empty set V ⊂ R2 is a compact F -invariant set, if V is compact and for each

x ∈ V there exists γ ∈ D such that γ(0) = x and γ(t) ∈ V for all t ∈ T .

Definition 2.5. (see [21]) Let a, b ∈ X ⊆ R2 and D be a dynamical system in the sense

mentioned above. Let γ ∈ D and t0, t1 ∈ T be such that t0 < t1. A simple path from a to b

generated by D is defined to be the set {γ(t) : t0 ≤ t ≤ t1} where γ(t0) = a, γ(t1) = b and γ̇

has only finitely many discontinuities on [t0, t1] and a 6= γ(s) 6= b for all t0 < s < t1.
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Definition 2.6. (see [21]) Let F : X → 2R2
be a set-valued function specified above. Let V ⊂

X ⊆ R2 be a non-empty compact F -invariant set. Let V ∗ = {γ ∈ D|γ(t) ∈ V, for all t ∈ T}
where V ⊂ R2 is a compact F -invariant set. The set V is called a chaotic set provided that

(1) for all a, b ∈ V , there exists a simple path from a to b generated by V ∗,

(2) there exists U ⊂ V non-empty and open (relative to V ) and γ ∈ V ∗ such that

γ(t) ∈ V \ U for all t ∈ T (i.e. there exists γ ∈ V ∗ such that {γ(t) : t ∈ T} is not

dense in V ).

Stockman and Raines [21] proved that the existence of a chaotic set V implies the existence

of Devaney chaos, and that the existence of a chaotic set V with a non-empty interior or

homeomorphic to [0, 1] where functions f and g fulfil the conditions ‖f(x)‖‖g(x)‖ > 0 and

cos−1
(

f(x)·g(x)
‖f(x)‖‖g(x)‖

)
= π for all x ∈ V implies the existence of Li-Yorke and distributional

chaos 1. The paper [P3] continues the work done in [21] and describes and illustrates chaotic

sets V ⊂ R2 and associated chaotic sets of solutions V ∗.

Theorem 2.1 and Theorem 2.2 show that any continuous dynamical system generated

by the Euler equation branching (4) where the singular point x∗ of the first branch f is

hyperbolic and the solution of the second branch g is unbounded in B̄δ(x
∗), where δ > 0 is

such that g(x) 6= 0 for every x ∈ B̄δ(x
∗), admits the existence of chaotic sets. From this it

follows that if the first branch has a hyperbolic singular point x∗ and the second branch has

a hyporbolic singular point y∗, and x∗ 6= y∗, then the trajectories corresponding to both the

branches are located and directed in such a way that they can give rise to a chaotic set V

in the corresponding phase portrait in R2. In [P3], we illustrate all such cases. Note that

from Definition 2.6 it follows that a sufficient condition for the existence of a chaotic set V ,

in addition to the “right” direction and location of the trajectories, is the existence of the

set of solutions V ∗ associated to the chaotic set V (in the sense of Definition 2.6), i.e. the

existence of an appropriate set of solutions with an appropriate branch switching. Such a

set of solutions V ∗ is constructed in the proof of Theorem 2.3 in [P3].

Theorem 2.1. (see [21]) Let F : X → 2R2
be a set-valued function specified above. Let

x∗ ∈ X ⊆ R2, f(x∗) = 0 and g(x∗) 6= 0, let λ1, λ2 be the eigenvalues of Jacobi’s matrix of

the system ẋ = f(x) in the point x∗ and e1, e2 be the corresponding eigenvectors. We choose

δ > 0 such that g(x) 6= 0 for every x ∈ B̄δ(x
∗). Let the solution of ẋ = g(x) be unbounded in

B̄δ(x
∗). Then, the following assertions hold.

(1) If there exists ε > 0 such that x∗ is a source or a sink 2 for f on Bε(x
∗), then F

admits a chaotic set.

1The Devaney, Li-Yorke and distributional chaoses are defined in the usual way, see [21].
2By a source we mean an unstable node or an unstable focus. By a sink we mean a stable node or a stable

focus.
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(2) If λ1, λ2 are such that λ1 < 0, λ2 > 0 and g(x∗) 6= αe1 and g(x∗) 6= βe2, where

α, β ∈ R \ {0}, then F admits a chaotic set with a non-empty interior.

Our main contribution to this area is formulated in the following two theorems and

a few remarks. Note that in Theorem 2.1 the case when g(x∗) = αe1 or g(x∗) = βe2,

where α, β ∈ R \ {0}, is not covered. Under the assumptions of Theorem 2.1 we prove that

also in this missing case, similar results are valid.

Theorem 2.2. (see [P3]) Let λ1 < 0, λ2 > 0 (i.e. x∗ is a saddle point) and g(x∗) = αe1 or

g(x∗) = βe2, where α, β ∈ R \ {0}. Then F admits a chaotic set.

An example of a chaotic set V associated to the Euler equation branching (ẋ ∈ f(x), g(x))

is shown in Figure 2. The black trajectories correspond to the first branch (ẋ = f(x)) and

the blue trajectories correspond to the second branch (ẋ = g(x)). The black trajectories

illustrate the behaviour of the dynamical system in a neighbourhood of a saddle and the

blue trajectories illustrate the behaviour of the dynamical system in a neighbourhood of

an unstable focus. The red areas represent the chaotic sets, three ones with a non-empty

interior and one homeomorphic to the unit interval.

Figure 2. An example of a chaotic set V (see [P3])

In the following theorem we assume that the branches f and g are such that the chaotic set

V is admitted, e.g. both the branches have hyperbolic singular points, say x∗ corresponding

to f and y∗ corresponding to g, and f(x∗) = 0, g(x∗) 6= 0 and f(y∗) 6= 0, g(y∗) = 0, i.e.

x∗ 6= y∗.

Theorem 2.3. (see [P3]) In a dynamical system D generated by the Euler equation branching

in R2 there exists a chaotic set V (with associated set of solutions V ∗). Hence, the associated

set of solutions V ∗ is Devaney, Li-Yorke and distributionally chaotic.

Remark 2.1. The proof of Theorem 2.3 lies in the construction of an appropriate set of

solutions V ∗. For one set V ⊂ R2 (understood as non-empty compact subset of R2) there

can exist uncountably many different possible sets V ∗ differing just in the branch switching
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(i.e. in the set of solutions V ∗) depending on the character of the modelled problem (i.e. of

the particular dynamical system). The “force” causing the switch is exogenously determined,

and once more depends on the particular modelled problem and its interpretation, see the

application part of this problem in Section 4.

Remark 2.2. (see [P3]) Note that if the set V ∗ associated to a set V ⊂ R2 with respect to

a set-valued function F specified above consists of only one solution γ, then the conditions

(1) and (2) from Definition 2.6 cannot be fulfilled simultaneously. Therefore, a set V with

a one point set of solutions V ∗ associated to V is a trivial example of a non-chaotic set.

3. Aggregate macroeconomic equilibrium models

In this section we present an overview of aggregate macroeconomic equilibrium models

considered in papers [P1], [P2] and [P3]. To this end, we employ both the system of dif-

ferential equations (1) and a special type of differential inclusion (4) mentioned above to

describe certain macroeconomic situations. The starting point for creating of these models

is the fundamental macroeconomic equilibrium model called IS-LM model. In this thesis,

the aggregate macroeconomic equilibrium is understood to be the simultaneous goods market

and money (or financial assets) market equilibrium.

Definition 3.1. (see [8], [10]) The original dynamic IS-LM model is given by a system of

differential equations

IS: dY
dt

= α[I(Y,R)− S(Y,R)]

LM: dR
dt

= β[L(Y,R)−MCB],
(6)

where Y is the aggregate income (GDP, GNP), R is the interest rate, I(Y,R) is an investment

function, S(Y,R) is a saving function, L(Y,R) is a money demand function, MCB > 0 is the

money stock and α, β > 0 are certain parameters of dynamics.

In the IS-LM model, the investment and saving functions represent the goods market, and

the money demand function and the money stock represent the money market. The goods

market is described by two sectors of economy: 1) households represented by the savings, and

2) firms represented by the investment. The constant money stock assumption represents an

exogenous conception of the money supply. The money stock is determined by the central

bank. In the original IS-LM model, the price level is assumed to be constant, so the types

of the interest rate are not distinguished. The original model is demand-oriented, i.e. the

supply side is fully adapted to the demand side. In summary (based on the mentioned

assumptions), the original model is applicable in a state of a recessionary gap. The equality

of the investment and the savings represents the goods market equilibrium. The equality of

the money demand and the money supply is the money market equilibrium.

The second considered aggregate macroeconomic equilibrium model is a modified IS-LM

model. In order to extend the applicability of the IS-LM model, we modify two of the
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assumptions made in the original model: 1) the assumption of the constant price level, 2)

the assumption of the exogenous money supply. More explicitly, we suppose 1) a floating

instead of a constant price level in place of the assumption 1. It requires two types of interest

rates - the long-term real interest rate R on the goods market and the short-term nominal

interest rate 3 i on the money market (or financial assets market) to be distinguished. The

relationship between these two types of interest rates is given by i = R −MP + πe, where

MP is a maturity premium and 4 πe is an expected inflation rate, see [4]. In the following, we

assume that MP and πe are constants, hence di
dt

= d(R−MP+πe)
dt

= dR
dt

. Secondly, we suppose

2) that the assumption of the exogenous money supply can be replaced with the assumption

of the joint exogenous and endogenous money supply taking place simultaneously. Here, the

endogenous money supply means that money is generated in economies by credit creation,

see [3], [19]. The fact that both the endogenous and exogenous money supply can arise in

the real world is illustrated e.g. by [2], [17]. Thus, the supply of money is now given by

M(Y,R−MP + πe) +MCB, see [P3], where M(Y,R−MP + πe) is a newly defined money

supply function representing the endogenous part of the money supply, and MCB is the

money stock (determined by the central bank) representing the exogenous part of the money

supply. The modified IS-LM model is still only demand-oriented, i.e. this model describes

the macroeconomic situation during one of the economic cycle phases called recession.

Definition 3.2. (see [P3], [O4]) The modified IS-LM model is given by the following system

IS: dY
dt

= α[I(Y,R)− S(Y,R)]

LM: dR
dt

= β[L(Y,R−MP + πe)−M(Y,R−MP + πe)−MCB],
(7)

where Y is the aggregate income (GDP, GNP), R is the long-term real interest rate, I(Y,R)

is an investment function, S(Y,R) is a saving function, L(Y,R − MP + πe) is a money

demand function, M(Y,R −MP + πe) is a money supply function, MCB > 0 is the money

stock and α, β > 0 are certain parameters of dynamics.

The last considered restrictive assumption in the original model is the demand orienta-

tion. So, thirdly, we eliminate this assumption. We create a new supply-oriented aggre-

gate macroeconomic equilibrium model called the QY-ML model. Here, the supply-oriented

model is a model that describes the economic state when the demand fully adapts to the

supply. The QY-ML model describes the macroeconomic situation during the economic cy-

cle phase called expansion. The floating price level and the money supply conception are

modelled in the same way as in the modified IS-LM model.

3i does not denote
√
−1 in this thesis, i abbreviates the word “interest”.

4πe is the standard notation used in economy. Here, π does not mean the Ludolphian number and e does

not mean the Euler number. π denotes an inflation rate and the superscript e means “expected”.
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Definition 3.3. (see [P3]) The QY-ML model is given by the following system of differential

equations

QY: dY
dt

= α[Q(K(Y,R),L(Y,R),T(Y,R))− Y ]

ML: dR
dt

= β[M(Y,R−MP + πe) +MCB − L(Y,R−MP + πe)],
(8)

where Y is the aggregate income (GDP, GNP),R is the long-term real interest rate, Q(K,L,T)

is a production function, K(Y,R) is a capital function, L(Y,R) is a labour function, T(Y,R)

is a technical progress function, M(Y,R−MP + πe) is a money supply function, MCB > 0

is the money stock determined by the central bank, L(Y,R−MP + πe) is a money demand

function, MP > 0 is a maturity premium, πe > 0 is an expected inflation rate and α, β > 0

are certain parameters of dynamics.

The modified IS-LM model is valid during the recession, the new QY-ML model is valid

during the expansion. We join these two models using the Euler equation branching, see

Definition 2.2, and we create a new model which describes the macroeconomic situation

during all phases of the economic cycle (the recession, the trough, the expansion and the

peak), called IS-LM/QY-ML model. In the peak, the new QY-ML model is switched into

the modified IS-LM model, and in the trough it goes the other way round.

Definition 3.4. (see [P3]) The overall macroeconomic IS-LM/QY-ML model is given by

the differential inclusion(
Ẏ

Ṙ

)
∈

{(
αd[I(Y,R)− S(Y,R)]

βd[L(Y, i)−M(Y, i)−MCB

)
,

(
αs[Q(K(Y,R),L(Y,R),T(Y,R))− Y ]

βs[M(Y, i) +MCB − L(Y, i)]

)}
(9)

where i = R−MP+πe, MCB > 0 and αd > 0, αs > 0, βd > 0, βs > 0 are certain parameters

of dynamics.

For the economic reasons, the investment, the saving, and the money demand functions

are supposed to satisfy the following properties (see [8])

0 <
∂I

∂Y
< 1,

∂I

∂R
< 0, 0 <

∂S

∂Y
< 1,

∂S

∂R
> 0, (10)

∂L

∂Y
> 0,

∂L

∂R
< 0. (11)

In addition, the so-called Kaldor’s condition is often assumed (see [5], [11])

∂I
∂Y

< ∂S
∂Y

for Y ∈ [0, X),
∂I
∂Y

> ∂S
∂Y

for Y ∈ (X,Z),
∂I
∂Y

< ∂S
∂Y

for Y ∈ (Z,∞),

(12)

where ∂I
∂Y

and ∂S
∂Y

are equal in the points X and Z (X < Z) for some fixed R. This condition

describes the sigma-shaped graphs of the functions I(Y ) and S(Y ) for some fixed R in the

way displayed in Figure 3. We suppose that the properties of the newly defined money supply,
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Figure 3. An illustration of Kaldor’s condition (see [P1], [P2])

production function, capital function, labour function, and technical progress function are

determined in the following way (see [P3])

0 <
∂M

∂Y
<
∂L

∂Y
,
∂M

∂R
> 0. (13)

∂Q

∂K
> 0,

∂Q

∂L
> 0,

∂Q

∂T
> 0, (14)

∂K

∂Y
> 0,

∂L

∂Y
> 0,

∂T

∂Y
> 0,

∂K

∂R
< 0,

∂L

∂R
< 0,

∂T

∂R
< 0, (15)

We also assume MP and πe to be constants, whence ∂L(Y,i)
∂i

= ∂L(Y,R−MP+πe)
∂R

and
∂M(Y,i)

∂i
= ∂M(Y,R−MP+πe)

∂R
.

The graphical representations of the models are given by the IS and LM curves, or QY and

ML curves and the corresponding phase portraits (or by a sketch of the vector field given by

the right-hand side of the system: every little arrow represents a vector at a given point).

The IS curve is the curve defined by the equation I(Y,R) = S(Y,R) and the QY curve is the

curve defined by the equation Q(K(Y,R),L(Y,R),T(Y,R)) = Y . The LM curve is the curve

defined by the equation L(Y,R) = MCB for the original IS-LM model and by the equation

L(Y,R−MP + πe) = M(Y,R−MP + πe) +MCB for the modified IS-LM model. The ML

curve is identical to the LM curve for the modified model.

4. Dynamical behaviour of the models

As mentioned above, all considered models are based on the original IS-LM model (6). The

IS-LM model was studied in many papers, see for example its continuous two-dimensional

versions in [8], [23] and [22], continuous three-dimensional versions in [7], [13], [20], [26] and

continuous four-dimensional version in [27]. In this section, we briefly present the results

from papers [P1], [P2], [P3] and a few supplements from the papers [O3] and [O4] concerning

the application of the general results on dynamical systems described in Section 2 to the

aggregate macroeconomic models presented in Section 3.

In the paper [P1], we find particular investment, saving and money demand functions

fulfilling conditions (10), (11) and Kaldor’s condition (12). Based on these functions we

create the augmented IS-LM model and study its equilibria and their stability properties.
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We illustrate the macroeconomic situation described by this model on several illustrative

examples, see e.g. Figure 4, and we create non-linear regression models corresponding to

the particular functions. It can be proved that in the augmented IS-LM model based on the

mentioned particular functions typically three singular points exist, and the first and the

third one is a stable node or a stable focus and the second one (located in the middle) is an

unstable saddle point as it is illustrated in Figure 4, see [P1]. In Figure 4, we can see an

Figure 4. An illustrative example of the augmented IS-LM model based on

particular functions (see [P1])

illustration of a behaviour of a particular dynamical system with three singular points E1,

E2 and E3 where the point E1 is a stable node, the point E3 is a stable focus and the point

E2 is an unstable saddle point.

In the paper [P2], we establish and prove a sufficient condition for the existence of the

relaxation oscillations in the original IS-LM model (6). We assume that the adjustment

speed of the money market is very slow compared with the adjustment speed of the goods

market, i.e. the adjustment speed of the aggregate income Y is faster than the adjust-

ment speed of the long-term real interest rate R. We describe this situation by the system

(see [P2])
dY
dt

= α[I(Y,R)− S(Y,R)]
dR
dt

= εβ[L(Y,R)−MCB],
(16)

where ε is a small positive parameter. Thus, there remains only the IS curve to be treated.

Theorem 4.1. (see [P2]) Let us consider an IS-LM model with very slow changes of in-

terest rate R in the time (16) subjected to the economic properties (10), (11) and Kaldor’s

conditions (12). Then in such a model the clockwise relaxation oscillations arise.

The relaxation oscillations from the previous theorem represent the relaxation oscillations

on the goods market, i.e. on the IS side of the IS-LM model, and can be seen in Figure 5.

Here, the arcs A1 and A3 are stable arcs and the arc A2 is an unstable arc. The relaxation

10



Figure 5. Relaxation oscillations on the goods market (see [P2])

oscillations on the goods market cause seemingly unexpected fluctuations of the aggregate

income Y (see the vertical segment between the point B and C or between B′ and C ′

in Figure 5), and the moving point has an infinitely large velocity of motion here. The

relaxation oscillations (i.e. fluctuations of aggregate income Y ) whose existence is guaranteed

by Theorem 4.1 emerge as a consequence of the monetary policy. An analogue to Theorem 4.1

is true also for the modified IS-LM model, see [O3]. It is necessary to remark that the

assumption of the adjustment speed of the aggregate income Y faster than the adjustment

speed of the long-term real interest rate R is unusual.

Usually, an opposite case is assumed, i.e. that the adjustment speed of the money market is

faster than the adjustment speed of the goods market, i.e. the adjustment speed of the long-

term real interest rate R is faster than the adjustment speed of the aggregate income Y .

We focus on this problem in [O4] for the modified IS-LM model (7). We describe this

macroeconomic situation by the system (see [O4])

dY
dt

= εα[I(Y,R)− S(Y,R)]
dR
dt

= β[L(Y,R−MP + πe)−M(Y,R−MP + πe)−MCB]
(17)

where ε is a small positive parameter. Thus, again only the LM curve remains to be dealt

with. In [O4], we formulate a sufficient condition for the existence of the relaxation os-

cillations in the system (17) (provided the changes of long-term real interest rate is faster

than that of the aggregate income). We call this sufficient condition the three phases money

demand and money supply depending on the short-term nominal interest rate i (or on the

long-term real interest rate R) for some fixed aggregate income Y . As the name of this

sufficient condition suggests, the courses of the functions L(i) and M(i) are divided into

three phases: 1) i ∈ [0, P ), 2) i ∈ (P,Q) and 3) i ∈ (Q,∞), where 0 < P < Q. In the

first and in the third phases (i.e. for i ∈ [O,P ) ∪ (Q,∞)), the money demand and the

money supply behave usually as it is described in (11) and (13), i.e. ∂L
∂i

= ∂L
∂R

< 0 and
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∂M
∂i

= ∂M
∂R

> 0. In the second phase (i.e. for i ∈ (P,Q)), the properties of the money de-

mand and the money supply are precisely the reversal, i.e. ∂L
∂R

> 0 and ∂M
∂R

< 0. The second

phase can be interpreted as describing economic subjects behaviour in a situation resembling

a liquidity trap. The relaxation oscillations in this case represent the relaxation oscillations

on the money market, i.e. on the LM side of the IS-LM model. The seemingly unexpected

fluctuations of the long-term real interest rate R are caused by the relaxation oscillations

on the money market. Furthermore, in [O4], we also model an economic situation where

the courses of the functions L(i) and M(i) are divided into more than three parts, and

where the phase characterised by an usual behaviour of the money demand and of the

money supply alternates with the phase characterised by precisely the reverse behaviour

of the money demand and of the money supply (this latter behaviour can be interpreted

as describing economic subjects in a situation resembling a liquidity trap). In this case,

several seemingly unexpected fluctuations of the long-term real interest rate can emerge,

see e.g. the vertical segments A, B, C, D, E and F in Figure 6. The relaxation oscilla-

Figure 6. Relaxation oscillations on the money market where the courses of

the functions L(i) and M(i) are divided into seven parts, three of them being

interpreted as a liquidity trap (see [O4])

tions on the money market (i.e. these fluctuations of long-term real interest rate) emerge as

a consequence of the fiscal policy. However, this phenomenon is not desirable. In order to

reduce the impact of the latter, we have suggested a possible cooperation between the fiscal

and monetary policy, see [O4].

In the paper [P3], we show that Devaney, Li-Yorke and distributional chaos in economies,

described by the IS-LM/QY-ML model, may arise. We consider the IS-LM/QY-ML model

where the functions I, S, L, M , Q, K, L, T satisfy conditions (10), (11), (13), (14), (15) and,

in addition, the conditions ∂I
∂Y

< ∂S
∂Y

and ∂Q
∂Y

< 1. Under these conditions, the corresponding

IS and QY curves are in fact graphs of decreasing functions, and the corresponding LM
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curve (which is identical to the ML curve) is in fact a graph of an increasing function.

These properties of the IS, QY and LM (ML) curves are in a sense generic. It can be

proved that the singular point (if it exists) of the modified IS-LM model with previously

mentioned conditions on the functions I, S, L and M is a stable node or a stable focus, and,

similarly, the singular point (if it exists) of the QY-ML model with previously mentioned

conditions on the functions Q, K, L, T, M and L is an unstable saddle point, see [P3]. The

phase portrait of the IS-LM/QY-ML model corresponding to this situation is displayed in

Figure 7. In Figure 7 the black curves and trajectories correspond to the IS-LM model, i.e.

Figure 7. An illustration of the chaotic sets in the IS-LM/QY-ML model (see [P3])

to the IS-LM branch of the IS-LM/QY-ML model, where an stable focus arises, and the blue

curves and trajectories correspond to the QY-ML model, i.e. to the QY-ML branch of the

IS-LM/QY-ML model, where unstable saddle emerges. Yellow areas in Figure 7 represent

the chaotic sets whose existence for the IS-LM/QY-ML model is admitted by Theorems

2.1 and 2.2. Furthermore, if the members of the set of solutions V ∗ (corresponding to a

chaotic set V ) to the IS-LM/QY-ML model are interpreted as describing the course of an

economy influenced by a regular economic cycle or describing the course of an economy

influenced by such an economic cycle in which two consecutive recession phase durations

and two consecutive expansion phase durations are of different lengths, then there exist

Devaney, Li-Yorke and distributional chaos in this economy, see the proof of Theorem 2.3

and its economic interpretation in [P3].

5. Conclusion

The IS-LM model is one of the cornerstones of the modern macroeconomic modelling.

Since the formulation of the original IS-LM model by Hicks in 1937 (see [10]) many papers

(see e.g. [7], [8], [13], [20], [23], [22], [26] or [27]) have been focused on the study of the various
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types of behaviour of modifications of this model (three-sector models, bifurcations, limit

cycles etc.). In the present thesis, we discovered a new possibility of a dynamical behaviour in

the original, the modified and the extended two-dimensional model. While the original model

describes the economies only in the stage of a recessionary gap, our modifications extend

the applicability of this model also to the remaining stages, in particular, the last presented

model describes the macroeconomic situation during the whole economic cycle. Looking for

these models and the study thereof led us to examine and extend a new approach, based on

the Euler equation branching, to the description of the dynamical behaviour in the plane R2.

This enabled us to prove certain results on the possible inception of chaos in R2.

Presentations related to the thesis

[C1] 37th International Conference Macromodels 2010, Pu ltusk, Poland, December

1 - 4, 2010.

Talk: Mathematical Modelling of Macroeconomic Equilibrium or IS-LM Model Based

on Special Functions.

[C2] 29th International Conference on Mathematical Methods in Economics 2011, Jánská
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[P1] B. Volná Kaličinská, Augmented IS-LM model based on particular functions, Appl.

Math. Comput. 219 (3) (2012), 1244–1262.
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