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Předseda oborové rady: prof. RNDr. Miroslav Englǐs, DrSc.
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Slezská univerzita v Opavě
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1 Introduction

Over the history of mankind we have always tried to determine what can be

considered as order and what is already chaos. And so nowadays we have dozens of

different definitions and levels of chaotic behaviour. It is not in the scope of this

thesis to even name all of them (we will closely look at 3 different areas).

The history of chaos theory in mathematics could go as far back as Lorenz

(butterfly effect, 1960s), Poincaré (sensitivity to initial conditions, n-body problem,

19th century), or even Kepler (planetary motion, 17th century)... but as

Oestreicher said in [Oes07] “Lorenz had rediscovered the chaotic behavior of a

nonlinear system, that of the weather, but the term chaos theory was only later

given to the phenomenon by the mathematician James A. Yorke, in 1975.” It is

true that Yorke, together with Li, gave one of the first definitions of chaos in

mathematics in [LY75], even though more commonly we hear Devaney’s description

used as the definition of chaos [Dev89].

The term entropy has been used in physics to describe chaotic behavior since

approximately the 19th century (see [Cla56, Cla67]), but the popularity of this

term came with information science in the mid 20th century [SWB51] while in

math the attention was brought to entropy by Kolmogorov and Sinai in

[Kol58, Sin59]. The term entropy can now be found in many areas of science;

usually it means disorder or chaos. In mathematics a system with positive entropy

can also be called h-chaotic. We can try to dig deeper in history for other hints of

chaos definitions, but if we look at it closely, chaos theory and dynamical systems

are relatively young branches of mathematics with good potential. For some more

details about the history of different types of chaos and entropy see

[Dow07, Oes07, CAM+05] and [Wal00, chapters: 4, 7, 8].

Out of the many different definitions of chaos and entropy, this thesis will mainly

consider distributional chaos as defined in [SS94, BSŠ05] (and also its relation with

Li-Yorke chaos [LY75]). For entropy we will focus on topological entropy [AKM65]

and a special case of measure-theoretic entropy - “fair entropy” originally defined in

[MR18].
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The thesis is based on 4 papers [A, B, C, D]. The first 2 are focused more on

distributional chaos, while the other 2 deal with entropy. The main topic of this thesis

involves the problem of determining the relationships between the different types of

chaos, as well as the “stability” of each type. Stability can be understood as the

persistence of chaos under: conjugacy, composition, extension, small pertubations,

etc. The topic of stability also raises the question of topological invariants, which

are not always easy to find (2 of my 4 articles introduce 2 new invariants [A, C]).

The thesis is organized as follows. In the next section we give motivational

comments and relations about the main types of chaos for this thesis. In section 3

we properly introduce the necessary notations, background and definitions. Section

4 points out our main results from all 4 articles. Open questions follow in section 5.

Then we close with a list of publications, citations and presentations. In the

appendices the reader can find full copies of the articles [A, B, C, D] along with

statements confirming my coauthorship and the acceptance of article [C] for

publication.

2 Motivation for the research

If we look at continuous functions acting on the closed interval, a lot of the definitions

of chaos coincide. Li and Yorke claimed that period 3 implies chaos [LY75], while

Smı́tal (and Misiurewicz) showed that period 3 is actually not necessary for Li-Yorke

(LY) chaos [MS88, Smı́86] already on the interval (even for C∞ maps). However

their examples also have topological entropy equal to 0. That led to an assumption

that positive topological entropy is a stronger type of chaos than LY. When later

Schweizer and Smı́tal defined distributional chaos [SS94] (abbreviated DC, or DC1,

since later there were defined DC1, DC2, DC3 as subtypes of DC - for details see

section 3), they also discoverd that the existence of a single DC-pair is equivalent to

positive topological entropy for continuous maps on a closed interval. Later it also

was shown that the existence of any kind of DC-pair is equivalent to the existence

of an uncountabele DC1-set and positive topological entropy for continuous maps on
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closed intervals and graphs, even though in general these concepts are distinguishable

(see eg. [BSŠ05, Pik07, Mál07, KKKM11, Koč12]). It is also known that topological

entropy is a topological invariant, and the same was shown about DC1 and DC2 (see

[Wal00, SŠ04]).

And so the question naturally arose how much “weaker” is the definition of DC3 in

general spaces than the first 2 types? Well, it turned out that even though on the

closed interval DC3 is equivalent to positive topological entropy, in general it is not

even as strong as LY, moreover the property, as it is defined, is in some sense unstable

[A]. Nevertheless, we had hoped to carry at least some of the results from intervals

and graphs to dendrites, since they are often understood as a collection of intervals

glued together, and so they are a natural next step from the interval and graphs to

slightly more complicated spaces. The results of that investigation are found in [B].

On the other hand, a common task when studying entropy is to calculate its value,

or at least find some upper or lower bounds. (Lower bounds are best when we want

to show that the entropy is positive, and upper when we want to show that it is

zero.) How can we connect these entropy bounds with the dimension, the metric, or

other properties of the system? In the process of dealing with these questions, we

were able to improve some older results from [DZG98], and as a bonus we found a

new topological invariant [C].

Fair measures and fair entropy are the newest concepts we worked with. Both are

introduced in [MR18] in an attempt to find (again) an easier way to calculate

topological entropy. But instead of producing a new formula for topological entropy

they lead instead to a lower bound (hfair ≤ htop) and a new topological invariant.

We looked at the challenge of generalizing this concept; we managed to go beyond

compact spaces and continuous mappings [D]. Moreover, just as Birkhoff’s ergodic

theorem describes forward trajectories, fair measures give us a tool for studying

backward trajectories.
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3 Terminology and notation

If not indicated otherwise, we will use the following notation throughout the thesis.

The pair (X, d) will be a non-empty compact metric (or at least metrizable) space

with metric d. By f : X → X we denote a continuous map, and fn denotes the nth

iterate of f , for n ∈ N0, so that f 0(x) = id(x) = x, fn+1 = f ◦ fn.

Dendrites are locally connected continua (nonempty, compact, connected metric

spaces) not containing any simple closed curves.

The concept of a tame graph (dendrite) was introduced in [BBP+18]. Let E(G)

denote the endpoints of the continuum G (i.e. the points x ∈ G having arbitrarily

small neighborhoods V with one-point boundaries #∂V = 1). Let B(G) denote the

branching points (i.e. the points x ∈ G such that any sufficiently small neighborhood

V of x has at least three points in its boundary #∂V ≥ 3). G is called a tame graph

if E(G) ∪B(G) has countable closure.

As an expansive non-invertible map we consider Walter’s definition from [Wal00]:

A continuous map f : X → X of a compact metric space (X, d) is called positively

expansive if there is c > 0 (an expansivity constant) such that if d(fn(x), fn(y)) ≤ c

for all n ≥ 0, then x = y.

A metric d : X ×X → [0,∞) is compatible if the topology it induces coincides with

the topology of X (where X is a compact metrizable space).

If f : X → X is a continuous map, then M(X, f) denotes the space of all f -

invariant probability measures on X. If A,B are two partitions of X, then their

common refinement is A
∨
B = {A ∩B : A ∈ A, B ∈ B} .

Li-Yorke chaos

As was already mentioned, one of the oldest definitions of chaos is attributed to Li

and Yorke [LY75] and so we can not omit this definition either. A pair of distinct

points (x, y) ∈ X2 is called Li-Yorke (LY) if

lim inf
k→∞

d(fk(x), fk(y)) = 0 and lim sup
k→∞

d(fk(x), fk(y)) > 0. (1)
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A subset S ⊂ X is LY-scrambled if it contains at least 2 distinct points and every pair

of distinct points in S is LY. Originally, to call a system LY-chaotic, there needed to

be an uncountable LY-scrambled set (LYu), later, especially in more general spaces,

there arose a discussion about LY-pairs (LY2) or infinite (but not uncountable) LY-

scrambled sets (LY∞). This distinction is not necessary on the closed interval or

graphs, since the existence of a LY-pair implies the existence of an uncountable

LY-set, but this is not true in general [RS14, KS89, FPS95].

Distributional chaos

From the definition of LY-chaos we can see that even though for a system to be

called LY-chaotic we need that the trajectories of 2 points will be sometimes close

and sometimes farther apart, one or the other can happen very “rarely” in time. As

an alternative, another type of chaos was defined in [SS94] where we look not just if

the separation and approach of trajectories happen, but also the proportion of times

when they happen. This type is called nowadays distributional chaos of type 1 (or

DC1 for short). Later this chaos was divided into 3 different types, DC1, DC2 and

DC3 (see [BSŠ05]) which are different in general, but the same in the interval. In [A]

we showed that DC3 can be a really weak and unstable type of chaos, so we proposed

a better definition and called it DC21
2
, which, as was shown, fixed the problems of

DC3, but in general DC21
2

is essentially weaker than DC2. (There is another kind of

distributional chaos, DC11
2
, defined in [Dow14], but this thesis will not discuss it.)

Distribution functions: For a pair (x, y) of points in X we define the upper

distribution function (Φ∗(f,x,y)(δ)) and the lower distribution function (Φ(f,x,y)(δ))

generated by f as

Φ∗(f,x,y)(δ) = lim sup
n→∞

1

n
#{0 ≤ k ≤ n; d(fk(x), fk(y)) < δ}, (2)

and

Φ(f,x,y)(δ) = lim inf
n→∞

1

n
#{0 ≤ k ≤ n; d(fk(x), fk(y)) < δ}, (3)

where #A denotes the cardinality of the set A. If it is clear from context that the

distribution functions are generated by f , it is often omitted in the notation.
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DC1: A pair (x, y) ∈ X2 is called distributionally scrambled of type 1 if

Φ∗(f,x,y)(δ) = 1, for every 0 < δ ≤ diam X and

Φ(f,x,y)(ε) = 0, for some 0 < ε ≤ diam X.

DC2: A pair (x, y) ∈ X2 is called distributionally scrambled of type 2 if

Φ∗(f,x,y)(δ) = 1, for every 0 < δ ≤ diam X and

Φ(f,x,y)(ε) < 1, for some 0 < ε ≤ diam X.

DC3: A pair (x, y) ∈ X2 is called distributionally scrambled of type 3 if

Φ(f,x,y)(δ) < Φ∗(f,x,y)(δ),

for every δ in some interval (a, b), where 0 ≤ a < b ≤ diam X.

DC21
2
: We can define distribution functions at 0 as limits:

Φ(f,x,y)(0) = lim
δ→0+

Φ(f,x,y)(δ) and Φ∗(f,x,y)(0) = lim
δ→0+

Φ∗(f,x,y)(δ).

Then (x, y) ∈ X2 is called distributionally scrambled of type 21
2

if

Φ(f,x,y)(0) < Φ∗(f,x,y)(0).

A subset S of X is distributionally scrambled of type i (or a DCi set), where

i ∈ {1, 2, 21
2
, 3}, if every pair of distinct points in S is a DCi pair. Originally, the

dynamical system (X, f) was called distributionally chaotic of type i (a DCi

system), if there was a DCi pair (DCi2), later the focus was moved to uncountable

DCi-sets (DCiu).

Entropy and related topics

We mostly do not work directly with the definition of entropy, but as a general

reminder we recall at least parts of the definitions. For a more detailed picture of

measure theoretic entropy see [Wal00, chapter 4] and for topological entropy see

[Wal00, chapters: 7, 8].
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Topological entropy: The topological entropy of a map f is commonly denoted

as h(f) or if there can be confusion htop(f).

The topological entropy of the map f is defined by the formula (Bowen-Dinaburg

definition)

htop(f) = lim
ε→0

(
lim sup
n→∞

1

n
log sn(ε)

)
,

where sn(ε) denotes the maximal cardinality of an (n, ε) − separated set. A subset

K of X is said to be (n, ε)− separated if each pair of distinct points of K is at least

ε apart in the metric dn, where the metric dn is defined for each positive integer n

by the formula: dn(x, y) = max{d(f i(x), f i(y)) : 0 ≤ i < n}.

Measure theoretic entropy: The measure theoretic entropy of a map f is usually

denoted as hµ(f), where µ is the corresponding invariant measure.

The measure theoretic entropy of the map f for an invariant measure µ is defined by

the formula

hµ(f) = sup
X

lim
n→∞

1

n
H

(
n−1∨
i=0

f−iX

)
, where H(A) = −

∑
A∈A

µ(A) · log µ(A),

where the supremum is taken over all countable measurable partitions X of X such

that H(X ) is finite. H(X ) is called the static entropy of the partition.

If f is a continuous map of a compact metric space X, then by the variational

principle [Wal00]

htop(f) = sup {hµ(f) : µ ∈M(X, f)} .

Fair entropy: Fair entropy is a measure theoretic entropy based on a special

(fair) measure, it was originally defined in [MR18], as the entropy of the unique fair

measure, but we extended the concept in [D] and so generalized the definition too.

We denote the fair entropy as hfair(f).

In our case, the space X does not need to be compact, and f does not need to be

continuous. We assume that X is a Polish space (separable completely metrizable

topological space) and F is the Borel σ-algebra. We also assume that f : X → X is

7



a surjection and {Xi}∞i=1 is a partition of X such that each restriction f |Xi
is a

measurable isomorphism onto its image.

An invariant measure µ ∈ M(X, f) is called fair if each measurable set B ≺ A (B

is a subset of an element of A) satisfies

µ(Xi ∩ f−1(B)) =
µ(B)

c(B)
, for all i ∈ p(B). (4)

Here A =
∨∞
i=1 {f(Xi), X \ f(Xi)} is a countable measurable partition, and for a set

B ≺ A we define p(B) := {i;B ⊂ f(Xi)} and c(B) := #p(B). The number c(B)

(or c(x) for the singleton {x}) is always positive since f is surjective, but may be

infinite.

The fair entropy of a system (X, f) is the supremum of measure-theoretic entropies

of its fair measures. (If the system has no fair measures, we take the supremum over

the empty set to be zero.)

hfair(f) = sup {hµ(f) | µ ∈M(X, f) is fair} .

HausLip constant: To research the connection of topological entropy and other

properties of a system (X, f) (X is a compact metrizable space and f is continous)

in [C], we define the HausLip constant of the system (X, f) as follows:

HausLip(X, f) := inf
d∈D(X)

HDd(X) · log+ Lipd(f), (5)

where D(X) is the set of all metrics on X compatible with its topology; log+(y) =

max{log(y), 0}. Furthermore we make the agreement that ∞ · 0 = 0 and 0 · ∞ is

undefined in (5). Also, inf(∅) =∞, so that (5) is defined for every system.

HDd(X) denotes the Hausdorff dimension of X with respect to the metric d,

HDd(X) = inf{s ≥ 0 | µs(X) = 0},

where the limit µs(X) = limε→0 µ
s
ε(X), called s-dimensional Hausdorff measure is

well-defined as ε decreases, µsε(X) = inf
∑

i |Bi|sd where the infimum is taken over all

possible ε-covers; |B|d = sup{d(x, y) | x, y ∈ B} denotes the diameter of a subset

B ⊂ X under the metric d and an ε-cover of X is a collection of sets Bi each of
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diameter ≤ ε whose union equals X. (For more details about Hausdorff dimension

see [BBT97, chapter 3.8] or [Mor19, Appendix 4].)

Lipd(f) denotes the Lipschitz constant of f with respect to the metric d,

Lipd(f) = sup
x 6=y

d(f(x), f(y))

d(x, y)
.

4 Main Results

[A] On the weakest version of distributional chaos.

As we mentioned before, the interest in this article was the investigation of the

“strengths and weaknesses” of DC3.

Theorem 1 ([A], Th. 1). There exists a distal dynamical system which is DC3

chaotic. Thus, DC3 chaos does not imply Li-Yorke chaos.

Theorem 2 ([A], Th. 2-3). Neither the existence of DC3-pairs nor the existence of

an uncountable DC3-set is preserved by topological conjugacy.

Since DC3 was such a weak form of chaos we introduced DC21
2

chaos with better

properties.

Theorem 3 ([A], Sec. 5). Let f and g be topologically conjugate continuous maps

of a compact metric space (X, d). Then f is DC21
2

if and only if g is DC21
2
. Moreover

if (x1, x2) ∈ X2 is DC21
2
, then it is LY.

[B] Distributional chaos and dendrites.

Since all the known examples for showing that the different types of DC are

distinct were in more complicated spaces, and the definitions coincide on intervals

and graphs (as we mentioned in section 2), we had a hope that dendrites would

follow this pattern. Our discovery was that dendrites are the simplest known spaces

for distinguishing all of the basic types of chaos.
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Theorem 4 ([B], Sec. 3). DC(i+ 1) does not imply DC(i) on dendrites in the sense

of uncountable sets or pairs (i ∈ {1, 2}).

Theorem 5 ([B], Sec. 3). DC3 does not imply DC21
2

on dendrites in the sense of

pairs.

Note. For proving that the existence of an uncountable DC3-set does not imply

existence of DC2-pairs, we used a dendrite built on a subshift of the full 5-shift (see

Figure 1) and the following lemma:

Lemma 1 ([B], Sec. 3.5). If Y ⊂ {0, 1, 2, 3, 4}N0 is a subshift then there is a

subdendrite G5Y of the dendrite G5 invariant under g5. Let E5Y be the set of end

points of G5Y , then (E5Y , g|E5Y ) is topologically conjugate to (Y, σ) and all DC-pairs

of G5Y are contained in E5Y .

Figure 1: Gehman style dendrite G5

In fact this shows us a little bit more: we can build a Gehman-style dendrite and

subdendrite “on” any shift (or subshift) with a finite alphabet and the dynamics will

be basically the same as we are used to on shift spaces. And so dendrites are much

more complicated spaces than our intuition might suggest.

Theorem 6 ([B], Sec. 3). Existence of a DCi pair does not imply existence of an

infinite DCi-set for any known i−type of distributional chaos
(
i ∈
{

1, 11
2
, 2, 21

2
, 3
})

.

In the end of the article we were able to get some positive results and show that the

existence of an arc horseshoe implies the strongest type of DC on dendrites.
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Theorem 7 ([B], Sec. 4). Let f be a continuous self-map of a dendrite. If an iterate

of f has an arc horseshoe then f is DC1u and ω-chaotic.

[C] Inequalities for entropy, Hausdorff dimension, and

Lipschitz constants.

In this article we construct suitable metrics for two classes of topological dynamical

systems in order to get a lower bound for topological entropy in terms of the resulting

Hausdorff dimensions and Lipschitz constants. As a nice side product we define also

a new topological invariant. (Recall that the HausLip constant is defined in (5).)

Lemma 2 ([C], Lem. 2). The HausLip constant is an invariant of topological

conjugacy and is bounded below by the topological entropy.

Theorem 8 ([C], Th. 3). Let f be a linear map of the n-torus Rn/Zn. Then the

HausLip constant equals the entropy. In other words, for each ε > 0 there is a metric

d on Rn/Zn compatible with the topology such that

HDd(Rn/Zn) · log+ Lipd(f) < htop(f) + ε.

Theorem 9 ([C], Th. 5). If f : X → X is positively expansive, then

HausLip(X, f) = htop(f). In other words, for every ε > 0 there is a metric d on X

compatible with its topology such that

HDd(X) · log+ Lipd(f) < htop(f) + ε.

As a corollary, we get also a one-sided version of Mañé’s theorem for expansive

homeomorphisms [Mañ79].

Corollary 10 ([C], Cor. 6). Any space X admitting a positively expansive map f

has finite topological dimension. If f can be chosen with zero entropy, then X is

totally disconnected.
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[D] Fair measures for countable-to-one maps.

We recall that the results in this section go beyond continuous maps and compact

spaces; for the setting and notation see section 3: fair entropy.

Since we generalized the notion of fair measures and entropy, we also generalized the

results from [MR18].

Theorem 11 ([D], Sec. 3). If X is a Polish space, f is a piecewise continuous map

on X, {Xi}i is countable, and µ is an ergodic fair measure, then

(a) For every φ ∈ L1(X) for µ-almost every x0 ∈ X for almost every

backward trajectory (xn) of x0,

1

N

N−1∑
n=0

φ(xn)→
∫
X

φ dµ.

(b) If also X is compact, then for µ-almost every x0 ∈ X, almost every

backward trajectory (xn) of x0 equidistributes for µ.

(c) If also f has a one-sided generating partition of finite entropy, then

for µ-almost every x0 ∈ X, for almost every backward trajectory (xn) of

x0,

1

N

N−1∑
n=0

log c(xn)→
∫

log c(x) dµ(x) = hµ(f).

For finding fair measures and fair entropy on countable state Markov shifts, we used

knowledge from probability theory and shift spaces. We formed a stochastic matrix Q

with entries qji =
mij

cj
, where cj =

∑
imij and mij are the entries from the transition

matrix for the Markov shift.

Theorem 12 ([D], Sec. 4). Let (ΣM , σ) be a transitive countable-state Markov shift

with all cj finite. Given any point y0 ∈ ΣM the behavior of a random backward

trajectory (yn) is as follows:

(a) If Q is positive recurrent, then there is a unique fair measure µ and

(yn) equidistributes for µ.

(b) If Q is null recurrent, then (yn) is dense in ΣM , but visits each cylinder
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set [i] with limiting frequency zero. There is no fair measure.

(c) If Q is transient, then (yn) visits each cylinder set [i] only finitely

often. There is no fair measure.

To get further results we needed a good notion of isomorphism and the classic concept

was not appropriate for fair measures. We proposed the following definition:

Two systems (X1, f1), (X2, f2) are called fair-isomorphic if there exist totally

invariant countable sets N1 ⊂ X1, N2 ⊂ X2 and a bijection (called the fair

isomorphism) ψ : X1 \ N1 → X2 \ N2, bimeasurable with respect to the Borel

σ-algebras, such that f2 ◦ ψ = ψ ◦ f1.

Theorem 13 ([D], Th. 5.2). A fair isomorphism induces an entropy-preserving

bijection of non-atomic fair measures. Moreover, this implies that fair-isomorphic

systems have the same fair entropy.

Equipped with the right isomorphism, we were able to connect interval maps and

tame graph maps back to Markov shifts (for details see [D, section 6-8]). The

connection is given by the itinerary map i(x) = (i0 i1 i2 · · · ) ∈ X N0 where

fn(x) ∈ in ∈ X for all n.

Theorem 14 ([D], Sec. 6-7). Let f be a mixing interval map with a countable

Markov partition X . The itinerary map i : [0, 1] → X N0 gives a fair isomorphism of

f with the associated Markov shift.

This gives us all nonatomic fair measures for f . This also gives us the behaviour

of typical backward trajectories. In the positive-recurrent case, we also give an

algorithm to construct a conjugate interval map for which Lebesgue measure is fair.

We got similar results for tame graphs.

Theorem 15 ([D], Sec. 8). Let g be a mixing tame graph map with a countable

Markov partition X . Then the itinerary map is a fair isomorphism. Moreover there

is a piecewise continuous interval map f which is fair isomorphic to g.

We call this map f a cut-and-paste model for g.

13



5 Open problems

Some interesting ideas for further research are given below, organised by topic. Some

of the questions listed here can be found in the articles, but some of them are new.

Distributional chaos

Question 1. Does DC3 imply Li-Yorke chaos on dendrites?

The question can be understood in two senses. Does an uncountable DC3-set imply

existence of an uncountable LY-set? Does a DC3-pair imply existence of a LY-pair?

We already know that these implications do not hold in general. But if we ask about

the interval and graphs, they do hold, and all of the known examples of dendrite maps

with DC3 also have LY. My guess is that it will be possible to construct a dendrite

map with an uncountable DC3-set and no uncountable LY-set, but the dendrite will

need to be non-tame (in the sense of [BBP+18]). An example with a DC3-pair but

no infinite LY-set is already given in [Drw18].

If the answer to this question turns out to be negative, it will give us one of the

simplest systems for which this implication does not hold.

Subquestion 1.1. Does DC3 imply type 21
2

distributional chaos (DC21
2
) on

dendrites for uncountable sets?

A negative answer to the preceding question would automatically solve this question

as well, since we know that DC21
2

implies LY [A]. But if the answer to the preceding

question turns out to be positive, it could be that the definition of DC21
2

is not

actually needed on dendrites. Nevertheless my guess is that the answer is again

negative, since as we showed in [B], the implication does not hold for pairs.

Question 2. Does DC21
2

imply DC2 on dendrites?

This question is important to determine if the definition of DC21
2

is needed on

dendrites, or if it is covered by one of the other types of DC.

14



HausLip and topological entropy

Since the origin of the HausLip constant was connected to topological entropy, we

would like to see several properties which are known about topological entropy to be

true about the HausLip constant as well.

Question 3. Does the HausLip constant “inherit” properties of topological entropy,

namely: do the product rule, iteration rule or factor rule for topological entropy hold

for the HausLip constant? To be precise, is it true that

• HausLip(X × Y, f × g) = HausLip(X, f) + HausLip(Y, g),

• HausLip(X, fn) = n · HausLip(X, f),

• HausLip(X, f) ≤ HausLip(Y, g) when (X, f) is a factor of (Y, g)?

In our paper [C] we showed several examples and conditions, where HausLip(X, f) =

htop(f) (and one example on the Hilbert cube where HausLip(X, f) > htop(f)). But

there is also the opposite question, which remains unanswered so far:

Question 4. Is there an interval map f : I → I with HausLip(I, f) > h(f)?

Fair measures and fair entropy

Since the topic is new, there are many open questions in this field. I indicate just a

few of the more basic questions:

Question 5. Can we carry the properties of topological entropy over to fair entropy:

• Is it true that hfair(f
n) = nhfair(f), or how does hfair(f

n) relate to hfair(f)?

• Is it true that hfair(f ◦ g) = hfair(g ◦ f) as is known about htop?

Question 6. Does fair entropy exhibit upper or lower semicontinuity within the

class of mixing interval maps of a fixed modality?

Question 7. Give lower (upper) bounds on the fair entropy of an interval map when

all but finitely many points have at least (at most) m preimages. Or can we give

some other bounds for this entropy as we did for topological entropy in [C]?

15



In [MR18] there was always exactly one fair measure (for continuous piecewise

monotone and mixing interval maps). In a more general setting, we may have to

give up existence or uniqueness of fair measures. But it is possible that for

continuous interval maps we might not have to give up existence; we begin by

striking out the mixing property:

Question 8. Does every piecewise monotone interval map have a fair measure, even

in the non-mixing case?

6 Publications

[A] Jana Doleželová-Hantáková, Zuzana Roth, and Samuel Roth. On the weakest

version of distributional chaos. International Journal of Bifurcation and Chaos,

26(14):1650235, 2016.

[B] Zuzana Roth. Distributional chaos and dendrites. International Journal of

Bifurcation and Chaos, 28(14):1850178, 2018.

[C] Samuel Roth and Zuzana Roth. Inequalities for entropy, Hausdorff dimension,
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Entropy, horseshoes and homoclinic trajectories on trees, graphs and

dendrites. Ergodic theory and dynamical systems, 31(1):165–175, 2011.

19
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